Metamath Proof Explorer


Theorem gpgiedg

Description: The indexed edges of the generalized Petersen graph GPG(N,K). (Contributed by AV, 26-Aug-2025)

Ref Expression
Hypotheses gpgov.j J = 1 ..^ N 2
gpgov.i I = 0 ..^ N
Assertion gpgiedg Could not format assertion : No typesetting found for |- ( ( N e. NN /\ K e. J ) -> ( iEdg ` ( N gPetersenGr K ) ) = ( _I |` { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 gpgov.j J = 1 ..^ N 2
2 gpgov.i I = 0 ..^ N
3 1 2 gpgov Could not format ( ( N e. NN /\ K e. J ) -> ( N gPetersenGr K ) = { <. ( Base ` ndx ) , ( { 0 , 1 } X. I ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) >. } ) : No typesetting found for |- ( ( N e. NN /\ K e. J ) -> ( N gPetersenGr K ) = { <. ( Base ` ndx ) , ( { 0 , 1 } X. I ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) >. } ) with typecode |-
4 3 fveq2d Could not format ( ( N e. NN /\ K e. J ) -> ( iEdg ` ( N gPetersenGr K ) ) = ( iEdg ` { <. ( Base ` ndx ) , ( { 0 , 1 } X. I ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) >. } ) ) : No typesetting found for |- ( ( N e. NN /\ K e. J ) -> ( iEdg ` ( N gPetersenGr K ) ) = ( iEdg ` { <. ( Base ` ndx ) , ( { 0 , 1 } X. I ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) >. } ) ) with typecode |-
5 prex 0 1 V
6 2 ovexi I V
7 5 6 xpex 0 1 × I V
8 eqid e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N = e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N
9 5 a1i I = 0 ..^ N 0 1 V
10 ovexd I = 0 ..^ N 0 ..^ N V
11 2 10 eqeltrid I = 0 ..^ N I V
12 9 11 xpexd I = 0 ..^ N 0 1 × I V
13 12 pwexd I = 0 ..^ N 𝒫 0 1 × I V
14 8 13 rabexd I = 0 ..^ N e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N V
15 14 resiexd I = 0 ..^ N I e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N V
16 2 15 ax-mp I e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N V
17 7 16 pm3.2i 0 1 × I V I e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N V
18 eqid Base ndx 0 1 × I ef ndx I e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N = Base ndx 0 1 × I ef ndx I e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N
19 18 struct2griedg 0 1 × I V I e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N V iEdg Base ndx 0 1 × I ef ndx I e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N = I e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N
20 17 19 mp1i N K J iEdg Base ndx 0 1 × I ef ndx I e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N = I e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N
21 4 20 eqtrd Could not format ( ( N e. NN /\ K e. J ) -> ( iEdg ` ( N gPetersenGr K ) ) = ( _I |` { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) ) : No typesetting found for |- ( ( N e. NN /\ K e. J ) -> ( iEdg ` ( N gPetersenGr K ) ) = ( _I |` { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) ) with typecode |-