Metamath Proof Explorer


Theorem graop

Description: Any representation of a graph G (especially as extensible structure G = { <. ( Basendx ) , V >. , <. ( .efndx ) , E >. } ) is convertible in a representation of the graph as ordered pair. (Contributed by AV, 7-Oct-2020)

Ref Expression
Hypothesis graop.h H=VtxGiEdgG
Assertion graop VtxG=VtxHiEdgG=iEdgH

Proof

Step Hyp Ref Expression
1 graop.h H=VtxGiEdgG
2 1 fveq2i VtxH=VtxVtxGiEdgG
3 fvex VtxGV
4 fvex iEdgGV
5 3 4 opvtxfvi VtxVtxGiEdgG=VtxG
6 2 5 eqtr2i VtxG=VtxH
7 1 fveq2i iEdgH=iEdgVtxGiEdgG
8 3 4 opiedgfvi iEdgVtxGiEdgG=iEdgG
9 7 8 eqtr2i iEdgG=iEdgH
10 6 9 pm3.2i VtxG=VtxHiEdgG=iEdgH