Metamath Proof Explorer


Theorem griedg0prc

Description: The class of empty graphs (represented as ordered pairs) is a proper class. (Contributed by AV, 27-Dec-2020)

Ref Expression
Hypothesis griedg0prc.u U=ve|e:
Assertion griedg0prc UV

Proof

Step Hyp Ref Expression
1 griedg0prc.u U=ve|e:
2 0ex V
3 feq1 e=e::
4 f0 :
5 2 3 4 ceqsexv2d ee:
6 opabn1stprc ee:ve|e:V
7 5 6 ax-mp ve|e:V
8 neleq1 U=ve|e:UVve|e:V
9 1 8 ax-mp UVve|e:V
10 7 9 mpbir UV