Metamath Proof Explorer


Theorem gropd

Description: If any representation of a graph with vertices V and edges E has a certain property ps , then the ordered pair <. V , E >. of the set of vertices and the set of edges (which is such a representation of a graph with vertices V and edges E ) has this property. (Contributed by AV, 11-Oct-2020)

Ref Expression
Hypotheses gropd.g φgVtxg=ViEdgg=Eψ
gropd.v φVU
gropd.e φEW
Assertion gropd φ[˙VE/g]˙ψ

Proof

Step Hyp Ref Expression
1 gropd.g φgVtxg=ViEdgg=Eψ
2 gropd.v φVU
3 gropd.e φEW
4 opex VEV
5 4 a1i φVEV
6 opvtxfv VUEWVtxVE=V
7 opiedgfv VUEWiEdgVE=E
8 6 7 jca VUEWVtxVE=ViEdgVE=E
9 2 3 8 syl2anc φVtxVE=ViEdgVE=E
10 nfcv _gVE
11 nfv gVtxVE=ViEdgVE=E
12 nfsbc1v g[˙VE/g]˙ψ
13 11 12 nfim gVtxVE=ViEdgVE=E[˙VE/g]˙ψ
14 fveqeq2 g=VEVtxg=VVtxVE=V
15 fveqeq2 g=VEiEdgg=EiEdgVE=E
16 14 15 anbi12d g=VEVtxg=ViEdgg=EVtxVE=ViEdgVE=E
17 sbceq1a g=VEψ[˙VE/g]˙ψ
18 16 17 imbi12d g=VEVtxg=ViEdgg=EψVtxVE=ViEdgVE=E[˙VE/g]˙ψ
19 10 13 18 spcgf VEVgVtxg=ViEdgg=EψVtxVE=ViEdgVE=E[˙VE/g]˙ψ
20 5 1 9 19 syl3c φ[˙VE/g]˙ψ