Metamath Proof Explorer


Theorem grothtsk

Description: The Tarski-Grothendieck Axiom, using abbreviations. (Contributed by Mario Carneiro, 28-May-2013)

Ref Expression
Assertion grothtsk Tarski=V

Proof

Step Hyp Ref Expression
1 axgroth5 xwxyx𝒫yxzx𝒫yzy𝒫xyxyx
2 eltskg xVxTarskiyx𝒫yxzx𝒫yzy𝒫xyxyx
3 2 elv xTarskiyx𝒫yxzx𝒫yzy𝒫xyxyx
4 3 anbi2i wxxTarskiwxyx𝒫yxzx𝒫yzy𝒫xyxyx
5 3anass wxyx𝒫yxzx𝒫yzy𝒫xyxyxwxyx𝒫yxzx𝒫yzy𝒫xyxyx
6 4 5 bitr4i wxxTarskiwxyx𝒫yxzx𝒫yzy𝒫xyxyx
7 6 exbii xwxxTarskixwxyx𝒫yxzx𝒫yzy𝒫xyxyx
8 1 7 mpbir xwxxTarski
9 eluni wTarskixwxxTarski
10 8 9 mpbir wTarski
11 vex wV
12 10 11 2th wTarskiwV
13 12 eqriv Tarski=V