Metamath Proof Explorer


Theorem grpinvf

Description: The group inversion operation is a function on the base set. (Contributed by Mario Carneiro, 4-May-2015)

Ref Expression
Hypotheses grpinvcl.b B=BaseG
grpinvcl.n N=invgG
Assertion grpinvf GGrpN:BB

Proof

Step Hyp Ref Expression
1 grpinvcl.b B=BaseG
2 grpinvcl.n N=invgG
3 eqid +G=+G
4 eqid 0G=0G
5 1 3 4 grpinveu GGrpxB∃!yBy+Gx=0G
6 riotacl ∃!yBy+Gx=0GιyB|y+Gx=0GB
7 5 6 syl GGrpxBιyB|y+Gx=0GB
8 1 3 4 2 grpinvfval N=xBιyB|y+Gx=0G
9 7 8 fmptd GGrpN:BB