Metamath Proof Explorer
Description: The left inverse of a group element. Deduction associated with
grplinv . (Contributed by SN, 29-Jan-2025)
|
|
Ref |
Expression |
|
Hypotheses |
grplinvd.b |
|
|
|
grplinvd.p |
|
|
|
grplinvd.u |
|
|
|
grplinvd.n |
|
|
|
grplinvd.g |
|
|
|
grplinvd.1 |
|
|
Assertion |
grplinvd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grplinvd.b |
|
| 2 |
|
grplinvd.p |
|
| 3 |
|
grplinvd.u |
|
| 4 |
|
grplinvd.n |
|
| 5 |
|
grplinvd.g |
|
| 6 |
|
grplinvd.1 |
|
| 7 |
1 2 3 4
|
grplinv |
|
| 8 |
5 6 7
|
syl2anc |
|