Metamath Proof Explorer


Theorem grpoass

Description: A group operation is associative. (Contributed by NM, 10-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypothesis grpfo.1 X=ranG
Assertion grpoass GGrpOpAXBXCXAGBGC=AGBGC

Proof

Step Hyp Ref Expression
1 grpfo.1 X=ranG
2 1 isgrpo GGrpOpGGrpOpG:X×XXxXyXzXxGyGz=xGyGzuXxXuGx=xyXyGx=u
3 2 ibi GGrpOpG:X×XXxXyXzXxGyGz=xGyGzuXxXuGx=xyXyGx=u
4 3 simp2d GGrpOpxXyXzXxGyGz=xGyGz
5 oveq1 x=AxGy=AGy
6 5 oveq1d x=AxGyGz=AGyGz
7 oveq1 x=AxGyGz=AGyGz
8 6 7 eqeq12d x=AxGyGz=xGyGzAGyGz=AGyGz
9 oveq2 y=BAGy=AGB
10 9 oveq1d y=BAGyGz=AGBGz
11 oveq1 y=ByGz=BGz
12 11 oveq2d y=BAGyGz=AGBGz
13 10 12 eqeq12d y=BAGyGz=AGyGzAGBGz=AGBGz
14 oveq2 z=CAGBGz=AGBGC
15 oveq2 z=CBGz=BGC
16 15 oveq2d z=CAGBGz=AGBGC
17 14 16 eqeq12d z=CAGBGz=AGBGzAGBGC=AGBGC
18 8 13 17 rspc3v AXBXCXxXyXzXxGyGz=xGyGzAGBGC=AGBGC
19 4 18 mpan9 GGrpOpAXBXCXAGBGC=AGBGC