Metamath Proof Explorer


Theorem grpoidinvlem1

Description: Lemma for grpoidinv . (Contributed by NM, 10-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypothesis grpfo.1 X=ranG
Assertion grpoidinvlem1 GGrpOpYXAXYGA=UAGA=AUGA=U

Proof

Step Hyp Ref Expression
1 grpfo.1 X=ranG
2 id YXAXAXYXAXAX
3 2 3anidm23 YXAXYXAXAX
4 1 grpoass GGrpOpYXAXAXYGAGA=YGAGA
5 3 4 sylan2 GGrpOpYXAXYGAGA=YGAGA
6 5 adantr GGrpOpYXAXYGA=UAGA=AYGAGA=YGAGA
7 oveq1 YGA=UYGAGA=UGA
8 7 ad2antrl GGrpOpYXAXYGA=UAGA=AYGAGA=UGA
9 oveq2 AGA=AYGAGA=YGA
10 9 ad2antll GGrpOpYXAXYGA=UAGA=AYGAGA=YGA
11 simprl GGrpOpYXAXYGA=UAGA=AYGA=U
12 10 11 eqtrd GGrpOpYXAXYGA=UAGA=AYGAGA=U
13 6 8 12 3eqtr3d GGrpOpYXAXYGA=UAGA=AUGA=U