Metamath Proof Explorer


Theorem grpoidinv

Description: A group has a left and right identity element, and every member has a left and right inverse. (Contributed by NM, 14-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypothesis grpfo.1 X = ran G
Assertion grpoidinv G GrpOp u X x X u G x = x x G u = x y X y G x = u x G y = u

Proof

Step Hyp Ref Expression
1 grpfo.1 X = ran G
2 simpl u G z = z w X w G z = u u G z = z
3 2 ralimi z X u G z = z w X w G z = u z X u G z = z
4 oveq2 z = x u G z = u G x
5 id z = x z = x
6 4 5 eqeq12d z = x u G z = z u G x = x
7 6 rspccva z X u G z = z x X u G x = x
8 3 7 sylan z X u G z = z w X w G z = u x X u G x = x
9 8 adantll u X z X u G z = z w X w G z = u x X u G x = x
10 9 adantll G GrpOp u X z X u G z = z w X w G z = u x X u G x = x
11 simpl G GrpOp u X z X u G z = z w X w G z = u G GrpOp
12 11 anim1i G GrpOp u X z X u G z = z w X w G z = u x X G GrpOp x X
13 id G GrpOp u X G GrpOp u X
14 13 adantrr G GrpOp u X z X u G z = z w X w G z = u G GrpOp u X
15 14 adantr G GrpOp u X z X u G z = z w X w G z = u x X G GrpOp u X
16 3 adantl u X z X u G z = z w X w G z = u z X u G z = z
17 16 ad2antlr G GrpOp u X z X u G z = z w X w G z = u x X z X u G z = z
18 simpr u G z = z w X w G z = u w X w G z = u
19 18 ralimi z X u G z = z w X w G z = u z X w X w G z = u
20 19 adantl u X z X u G z = z w X w G z = u z X w X w G z = u
21 20 ad2antlr G GrpOp u X z X u G z = z w X w G z = u x X z X w X w G z = u
22 15 17 21 jca32 G GrpOp u X z X u G z = z w X w G z = u x X G GrpOp u X z X u G z = z z X w X w G z = u
23 biid z X u G z = z z X u G z = z
24 biid z X w X w G z = u z X w X w G z = u
25 1 23 24 grpoidinvlem3 G GrpOp u X z X u G z = z z X w X w G z = u x X y X y G x = u x G y = u
26 22 25 sylancom G GrpOp u X z X u G z = z w X w G z = u x X y X y G x = u x G y = u
27 1 grpoidinvlem4 G GrpOp x X y X y G x = u x G y = u x G u = u G x
28 12 26 27 syl2anc G GrpOp u X z X u G z = z w X w G z = u x X x G u = u G x
29 28 10 eqtrd G GrpOp u X z X u G z = z w X w G z = u x X x G u = x
30 10 29 26 jca31 G GrpOp u X z X u G z = z w X w G z = u x X u G x = x x G u = x y X y G x = u x G y = u
31 30 ralrimiva G GrpOp u X z X u G z = z w X w G z = u x X u G x = x x G u = x y X y G x = u x G y = u
32 1 grpolidinv G GrpOp u X z X u G z = z w X w G z = u
33 31 32 reximddv G GrpOp u X x X u G x = x x G u = x y X y G x = u x G y = u