| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpfo.1 |
|
| 2 |
|
grpidinvlem3.2 |
|
| 3 |
|
grpidinvlem3.3 |
|
| 4 |
|
oveq1 |
|
| 5 |
4
|
eqeq1d |
|
| 6 |
5
|
cbvrexvw |
|
| 7 |
6
|
ralbii |
|
| 8 |
3 7
|
bitri |
|
| 9 |
|
oveq2 |
|
| 10 |
9
|
eqeq1d |
|
| 11 |
10
|
rexbidv |
|
| 12 |
11
|
rspccva |
|
| 13 |
8 12
|
sylanb |
|
| 14 |
13
|
adantll |
|
| 15 |
14
|
adantll |
|
| 16 |
1
|
grpocl |
|
| 17 |
16
|
3expa |
|
| 18 |
17
|
adantllr |
|
| 19 |
18
|
adantllr |
|
| 20 |
2
|
biimpi |
|
| 21 |
20
|
ad2antrl |
|
| 22 |
21
|
ad2antrr |
|
| 23 |
|
oveq2 |
|
| 24 |
|
id |
|
| 25 |
23 24
|
eqeq12d |
|
| 26 |
25
|
rspcva |
|
| 27 |
19 22 26
|
syl2anc |
|
| 28 |
27
|
adantr |
|
| 29 |
|
pm3.22 |
|
| 30 |
29
|
an31s |
|
| 31 |
30
|
adantllr |
|
| 32 |
31
|
adantllr |
|
| 33 |
32
|
adantr |
|
| 34 |
|
oveq2 |
|
| 35 |
|
id |
|
| 36 |
34 35
|
eqeq12d |
|
| 37 |
36
|
rspccva |
|
| 38 |
2 37
|
sylanb |
|
| 39 |
38
|
adantlr |
|
| 40 |
39
|
adantlr |
|
| 41 |
40
|
adantlll |
|
| 42 |
41
|
anim1i |
|
| 43 |
1
|
grpoidinvlem2 |
|
| 44 |
33 42 43
|
syl2anc |
|
| 45 |
16
|
3expb |
|
| 46 |
45
|
ad2ant2rl |
|
| 47 |
|
oveq1 |
|
| 48 |
47
|
eqeq1d |
|
| 49 |
48
|
cbvrexvw |
|
| 50 |
49
|
ralbii |
|
| 51 |
3 50
|
bitri |
|
| 52 |
|
oveq2 |
|
| 53 |
52
|
eqeq1d |
|
| 54 |
53
|
rexbidv |
|
| 55 |
54
|
rspcva |
|
| 56 |
51 55
|
sylan2b |
|
| 57 |
|
anass |
|
| 58 |
57
|
biimpi |
|
| 59 |
58
|
an32s |
|
| 60 |
59
|
ex |
|
| 61 |
45 60
|
syldan |
|
| 62 |
61
|
ad2ant2rl |
|
| 63 |
62
|
imp |
|
| 64 |
1
|
grpoidinvlem1 |
|
| 65 |
63 64
|
sylan |
|
| 66 |
65
|
exp43 |
|
| 67 |
66
|
rexlimdv |
|
| 68 |
56 67
|
syl5 |
|
| 69 |
46 68
|
mpand |
|
| 70 |
69
|
exp32 |
|
| 71 |
70
|
com34 |
|
| 72 |
71
|
imp32 |
|
| 73 |
72
|
impl |
|
| 74 |
73
|
adantr |
|
| 75 |
44 74
|
mpd |
|
| 76 |
28 75
|
eqtr3d |
|
| 77 |
76
|
ex |
|
| 78 |
77
|
ancld |
|
| 79 |
78
|
reximdva |
|
| 80 |
15 79
|
mpd |
|