Metamath Proof Explorer


Theorem grpoideu

Description: The left identity element of a group is unique. Lemma 2.2.1(a) of Herstein p. 55. (Contributed by NM, 14-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypothesis grpfo.1 X = ran G
Assertion grpoideu G GrpOp ∃! u X x X u G x = x

Proof

Step Hyp Ref Expression
1 grpfo.1 X = ran G
2 1 grpoidinv G GrpOp u X z X u G z = z z G u = z y X y G z = u z G y = u
3 simpll u G z = z z G u = z y X y G z = u z G y = u u G z = z
4 3 ralimi z X u G z = z z G u = z y X y G z = u z G y = u z X u G z = z
5 oveq2 z = x u G z = u G x
6 id z = x z = x
7 5 6 eqeq12d z = x u G z = z u G x = x
8 7 cbvralvw z X u G z = z x X u G x = x
9 4 8 sylib z X u G z = z z G u = z y X y G z = u z G y = u x X u G x = x
10 9 adantl G GrpOp u X z X u G z = z z G u = z y X y G z = u z G y = u x X u G x = x
11 9 ad2antlr G GrpOp u X z X u G z = z z G u = z y X y G z = u z G y = u w X x X u G x = x
12 simpr u G z = z z G u = z y X y G z = u z G y = u y X y G z = u z G y = u
13 12 ralimi z X u G z = z z G u = z y X y G z = u z G y = u z X y X y G z = u z G y = u
14 oveq2 z = w y G z = y G w
15 14 eqeq1d z = w y G z = u y G w = u
16 oveq1 z = w z G y = w G y
17 16 eqeq1d z = w z G y = u w G y = u
18 15 17 anbi12d z = w y G z = u z G y = u y G w = u w G y = u
19 18 rexbidv z = w y X y G z = u z G y = u y X y G w = u w G y = u
20 19 rspcva w X z X y X y G z = u z G y = u y X y G w = u w G y = u
21 20 adantll G GrpOp w X z X y X y G z = u z G y = u y X y G w = u w G y = u
22 13 21 sylan2 G GrpOp w X z X u G z = z z G u = z y X y G z = u z G y = u y X y G w = u w G y = u
23 1 grpoidinvlem4 G GrpOp w X y X y G w = u w G y = u w G u = u G w
24 22 23 syldan G GrpOp w X z X u G z = z z G u = z y X y G z = u z G y = u w G u = u G w
25 24 an32s G GrpOp z X u G z = z z G u = z y X y G z = u z G y = u w X w G u = u G w
26 25 adantllr G GrpOp u X z X u G z = z z G u = z y X y G z = u z G y = u w X w G u = u G w
27 26 adantr G GrpOp u X z X u G z = z z G u = z y X y G z = u z G y = u w X x X u G x = x x X w G x = x w G u = u G w
28 oveq2 x = u w G x = w G u
29 id x = u x = u
30 28 29 eqeq12d x = u w G x = x w G u = u
31 30 rspcva u X x X w G x = x w G u = u
32 31 adantll G GrpOp u X x X w G x = x w G u = u
33 32 ad2ant2rl G GrpOp u X w X x X u G x = x x X w G x = x w G u = u
34 33 adantllr G GrpOp u X z X u G z = z z G u = z y X y G z = u z G y = u w X x X u G x = x x X w G x = x w G u = u
35 oveq2 x = w u G x = u G w
36 id x = w x = w
37 35 36 eqeq12d x = w u G x = x u G w = w
38 37 rspcva w X x X u G x = x u G w = w
39 38 ad2ant2lr G GrpOp u X z X u G z = z z G u = z y X y G z = u z G y = u w X x X u G x = x x X w G x = x u G w = w
40 27 34 39 3eqtr3d G GrpOp u X z X u G z = z z G u = z y X y G z = u z G y = u w X x X u G x = x x X w G x = x u = w
41 40 ex G GrpOp u X z X u G z = z z G u = z y X y G z = u z G y = u w X x X u G x = x x X w G x = x u = w
42 11 41 mpand G GrpOp u X z X u G z = z z G u = z y X y G z = u z G y = u w X x X w G x = x u = w
43 42 ralrimiva G GrpOp u X z X u G z = z z G u = z y X y G z = u z G y = u w X x X w G x = x u = w
44 10 43 jca G GrpOp u X z X u G z = z z G u = z y X y G z = u z G y = u x X u G x = x w X x X w G x = x u = w
45 44 ex G GrpOp u X z X u G z = z z G u = z y X y G z = u z G y = u x X u G x = x w X x X w G x = x u = w
46 45 reximdva G GrpOp u X z X u G z = z z G u = z y X y G z = u z G y = u u X x X u G x = x w X x X w G x = x u = w
47 2 46 mpd G GrpOp u X x X u G x = x w X x X w G x = x u = w
48 oveq1 u = w u G x = w G x
49 48 eqeq1d u = w u G x = x w G x = x
50 49 ralbidv u = w x X u G x = x x X w G x = x
51 50 reu8 ∃! u X x X u G x = x u X x X u G x = x w X x X w G x = x u = w
52 47 51 sylibr G GrpOp ∃! u X x X u G x = x