Metamath Proof Explorer


Theorem grpocl

Description: Closure law for a group operation. (Contributed by NM, 10-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypothesis grpfo.1 X=ranG
Assertion grpocl GGrpOpAXBXAGBX

Proof

Step Hyp Ref Expression
1 grpfo.1 X=ranG
2 1 grpofo GGrpOpG:X×XontoX
3 fof G:X×XontoXG:X×XX
4 2 3 syl GGrpOpG:X×XX
5 fovcdm G:X×XXAXBXAGBX
6 4 5 syl3an1 GGrpOpAXBXAGBX