Metamath Proof Explorer


Theorem grpodivinv

Description: Group division by an inverse. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses grpdiv.1 X=ranG
grpdiv.2 N=invG
grpdiv.3 D=/gG
Assertion grpodivinv GGrpOpAXBXADNB=AGB

Proof

Step Hyp Ref Expression
1 grpdiv.1 X=ranG
2 grpdiv.2 N=invG
3 grpdiv.3 D=/gG
4 1 2 grpoinvcl GGrpOpBXNBX
5 4 3adant2 GGrpOpAXBXNBX
6 1 2 3 grpodivval GGrpOpAXNBXADNB=AGNNB
7 5 6 syld3an3 GGrpOpAXBXADNB=AGNNB
8 1 2 grpo2inv GGrpOpBXNNB=B
9 8 3adant2 GGrpOpAXBXNNB=B
10 9 oveq2d GGrpOpAXBXAGNNB=AGB
11 7 10 eqtrd GGrpOpAXBXADNB=AGB