Metamath Proof Explorer


Theorem grpoinvdiv

Description: Inverse of a group division. (Contributed by NM, 24-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses grpdiv.1 X=ranG
grpdiv.2 N=invG
grpdiv.3 D=/gG
Assertion grpoinvdiv GGrpOpAXBXNADB=BDA

Proof

Step Hyp Ref Expression
1 grpdiv.1 X=ranG
2 grpdiv.2 N=invG
3 grpdiv.3 D=/gG
4 1 2 3 grpodivval GGrpOpAXBXADB=AGNB
5 4 fveq2d GGrpOpAXBXNADB=NAGNB
6 1 2 grpoinvcl GGrpOpBXNBX
7 6 3adant2 GGrpOpAXBXNBX
8 1 2 grpoinvop GGrpOpAXNBXNAGNB=NNBGNA
9 7 8 syld3an3 GGrpOpAXBXNAGNB=NNBGNA
10 1 2 grpo2inv GGrpOpBXNNB=B
11 10 3adant2 GGrpOpAXBXNNB=B
12 11 oveq1d GGrpOpAXBXNNBGNA=BGNA
13 1 2 3 grpodivval GGrpOpBXAXBDA=BGNA
14 13 3com23 GGrpOpAXBXBDA=BGNA
15 12 14 eqtr4d GGrpOpAXBXNNBGNA=BDA
16 5 9 15 3eqtrd GGrpOpAXBXNADB=BDA