Metamath Proof Explorer


Theorem grpodivval

Description: Group division (or subtraction) operation value. (Contributed by NM, 15-Feb-2008) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses grpdiv.1 X=ranG
grpdiv.2 N=invG
grpdiv.3 D=/gG
Assertion grpodivval GGrpOpAXBXADB=AGNB

Proof

Step Hyp Ref Expression
1 grpdiv.1 X=ranG
2 grpdiv.2 N=invG
3 grpdiv.3 D=/gG
4 1 2 3 grpodivfval GGrpOpD=xX,yXxGNy
5 4 oveqd GGrpOpADB=AxX,yXxGNyB
6 oveq1 x=AxGNy=AGNy
7 fveq2 y=BNy=NB
8 7 oveq2d y=BAGNy=AGNB
9 eqid xX,yXxGNy=xX,yXxGNy
10 ovex AGNBV
11 6 8 9 10 ovmpo AXBXAxX,yXxGNyB=AGNB
12 5 11 sylan9eq GGrpOpAXBXADB=AGNB
13 12 3impb GGrpOpAXBXADB=AGNB