Metamath Proof Explorer


Theorem grpoeqdivid

Description: Two group elements are equal iff their quotient is the identity. (Contributed by Jeff Madsen, 6-Jan-2011)

Ref Expression
Hypotheses grpeqdivid.1 X=ranG
grpeqdivid.2 U=GIdG
grpeqdivid.3 D=/gG
Assertion grpoeqdivid GGrpOpAXBXA=BADB=U

Proof

Step Hyp Ref Expression
1 grpeqdivid.1 X=ranG
2 grpeqdivid.2 U=GIdG
3 grpeqdivid.3 D=/gG
4 1 3 2 grpodivid GGrpOpBXBDB=U
5 4 3adant2 GGrpOpAXBXBDB=U
6 oveq1 A=BADB=BDB
7 6 eqeq1d A=BADB=UBDB=U
8 5 7 syl5ibrcom GGrpOpAXBXA=BADB=U
9 oveq1 ADB=UADBGB=UGB
10 1 3 grponpcan GGrpOpAXBXADBGB=A
11 1 2 grpolid GGrpOpBXUGB=B
12 11 3adant2 GGrpOpAXBXUGB=B
13 10 12 eqeq12d GGrpOpAXBXADBGB=UGBA=B
14 9 13 imbitrid GGrpOpAXBXADB=UA=B
15 8 14 impbid GGrpOpAXBXA=BADB=U