Description: Two group elements are equal iff their quotient is the identity. (Contributed by Jeff Madsen, 6-Jan-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grpeqdivid.1 | |
|
grpeqdivid.2 | |
||
grpeqdivid.3 | |
||
Assertion | grpoeqdivid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpeqdivid.1 | |
|
2 | grpeqdivid.2 | |
|
3 | grpeqdivid.3 | |
|
4 | 1 3 2 | grpodivid | |
5 | 4 | 3adant2 | |
6 | oveq1 | |
|
7 | 6 | eqeq1d | |
8 | 5 7 | syl5ibrcom | |
9 | oveq1 | |
|
10 | 1 3 | grponpcan | |
11 | 1 2 | grpolid | |
12 | 11 | 3adant2 | |
13 | 10 12 | eqeq12d | |
14 | 9 13 | imbitrid | |
15 | 8 14 | impbid | |