Description: A group element's inverse is a group element. (Contributed by NM, 27-Oct-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grpinvcl.1 | |
|
grpinvcl.2 | |
||
Assertion | grpoinvcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvcl.1 | |
|
2 | grpinvcl.2 | |
|
3 | eqid | |
|
4 | 1 3 2 | grpoinvval | |
5 | 1 3 | grpoinveu | |
6 | riotacl | |
|
7 | 5 6 | syl | |
8 | 4 7 | eqeltrd | |