Metamath Proof Explorer


Theorem grpoinvcl

Description: A group element's inverse is a group element. (Contributed by NM, 27-Oct-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses grpinvcl.1 X=ranG
grpinvcl.2 N=invG
Assertion grpoinvcl GGrpOpAXNAX

Proof

Step Hyp Ref Expression
1 grpinvcl.1 X=ranG
2 grpinvcl.2 N=invG
3 eqid GIdG=GIdG
4 1 3 2 grpoinvval GGrpOpAXNA=ιyX|yGA=GIdG
5 1 3 grpoinveu GGrpOpAX∃!yXyGA=GIdG
6 riotacl ∃!yXyGA=GIdGιyX|yGA=GIdGX
7 5 6 syl GGrpOpAXιyX|yGA=GIdGX
8 4 7 eqeltrd GGrpOpAXNAX