Metamath Proof Explorer


Theorem grppnpcan2

Description: Cancellation law for mixed addition and subtraction. ( pnpcan2 analog.) (Contributed by NM, 15-Feb-2008) (Revised by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses grpsubadd.b B=BaseG
grpsubadd.p +˙=+G
grpsubadd.m -˙=-G
Assertion grppnpcan2 GGrpXBYBZBX+˙Z-˙Y+˙Z=X-˙Y

Proof

Step Hyp Ref Expression
1 grpsubadd.b B=BaseG
2 grpsubadd.p +˙=+G
3 grpsubadd.m -˙=-G
4 simpl GGrpXBYBZBGGrp
5 1 2 grpcl GGrpXBZBX+˙ZB
6 5 3adant3r2 GGrpXBYBZBX+˙ZB
7 simpr3 GGrpXBYBZBZB
8 simpr2 GGrpXBYBZBYB
9 1 2 3 grpsubsub4 GGrpX+˙ZBZBYBX+˙Z-˙Z-˙Y=X+˙Z-˙Y+˙Z
10 4 6 7 8 9 syl13anc GGrpXBYBZBX+˙Z-˙Z-˙Y=X+˙Z-˙Y+˙Z
11 1 2 3 grppncan GGrpXBZBX+˙Z-˙Z=X
12 11 3adant3r2 GGrpXBYBZBX+˙Z-˙Z=X
13 12 oveq1d GGrpXBYBZBX+˙Z-˙Z-˙Y=X-˙Y
14 10 13 eqtr3d GGrpXBYBZBX+˙Z-˙Y+˙Z=X-˙Y