Metamath Proof Explorer


Theorem grpstr

Description: A constructed group is a structure on 1 ... 2 . Depending on hard-coded index values. Use grpstrndx instead. (Contributed by Mario Carneiro, 28-Sep-2013) (Revised by Mario Carneiro, 30-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypothesis grpfn.g G=BasendxB+ndx+˙
Assertion grpstr GStruct12

Proof

Step Hyp Ref Expression
1 grpfn.g G=BasendxB+ndx+˙
2 df-plusg +𝑔=Slot2
3 1lt2 1<2
4 2nn 2
5 1 2 3 4 2strstr GStruct12