Metamath Proof Explorer


Theorem grpsubpropd

Description: Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015)

Ref Expression
Hypotheses grpsubpropd.b φBaseG=BaseH
grpsubpropd.p φ+G=+H
Assertion grpsubpropd φ-G=-H

Proof

Step Hyp Ref Expression
1 grpsubpropd.b φBaseG=BaseH
2 grpsubpropd.p φ+G=+H
3 eqidd φa=a
4 eqidd φBaseG=BaseG
5 2 oveqdr φxBaseGyBaseGx+Gy=x+Hy
6 4 1 5 grpinvpropd φinvgG=invgH
7 6 fveq1d φinvgGb=invgHb
8 2 3 7 oveq123d φa+GinvgGb=a+HinvgHb
9 1 1 8 mpoeq123dv φaBaseG,bBaseGa+GinvgGb=aBaseH,bBaseHa+HinvgHb
10 eqid BaseG=BaseG
11 eqid +G=+G
12 eqid invgG=invgG
13 eqid -G=-G
14 10 11 12 13 grpsubfval -G=aBaseG,bBaseGa+GinvgGb
15 eqid BaseH=BaseH
16 eqid +H=+H
17 eqid invgH=invgH
18 eqid -H=-H
19 15 16 17 18 grpsubfval -H=aBaseH,bBaseHa+HinvgHb
20 9 14 19 3eqtr4g φ-G=-H