Metamath Proof Explorer


Theorem halfaddsubcl

Description: Closure of half-sum and half-difference. (Contributed by Paul Chapman, 12-Oct-2007)

Ref Expression
Assertion halfaddsubcl ABA+B2AB2

Proof

Step Hyp Ref Expression
1 addcl ABA+B
2 halfcl A+BA+B2
3 1 2 syl ABA+B2
4 subcl ABAB
5 halfcl ABAB2
6 4 5 syl ABAB2
7 3 6 jca ABA+B2AB2