Metamath Proof Explorer


Theorem halfpm6th

Description: One half plus or minus one sixth. (Contributed by Paul Chapman, 17-Jan-2008) (Proof shortened by SN, 22-Oct-2025)

Ref Expression
Assertion halfpm6th 1 2 1 6 = 1 3 1 2 + 1 6 = 2 3

Proof

Step Hyp Ref Expression
1 3cn 3
2 3ne0 3 0
3 1 2 reccli 1 3
4 6cn 6
5 6re 6
6 6pos 0 < 6
7 5 6 gt0ne0ii 6 0
8 4 7 reccli 1 6
9 halfcn 1 2
10 3 9 pncan3i 1 3 + 1 2 - 1 3 = 1 2
11 halfthird 1 2 1 3 = 1 6
12 11 oveq2i 1 3 + 1 2 - 1 3 = 1 3 + 1 6
13 10 12 eqtr3i 1 2 = 1 3 + 1 6
14 3 8 13 mvrraddi 1 2 1 6 = 1 3
15 11 oveq2i 1 2 + 1 2 - 1 3 = 1 2 + 1 6
16 9 9 3 addsubassi 1 2 + 1 2 - 1 3 = 1 2 + 1 2 - 1 3
17 2cn 2
18 17 1 2 divcli 2 3
19 ax-1cn 1
20 2halves 1 1 2 + 1 2 = 1
21 19 20 ax-mp 1 2 + 1 2 = 1
22 2p1e3 2 + 1 = 3
23 22 oveq1i 2 + 1 3 = 3 3
24 1 2 dividi 3 3 = 1
25 23 24 eqtri 2 + 1 3 = 1
26 17 19 1 2 divdiri 2 + 1 3 = 2 3 + 1 3
27 21 25 26 3eqtr2i 1 2 + 1 2 = 2 3 + 1 3
28 18 3 27 mvrraddi 1 2 + 1 2 - 1 3 = 2 3
29 16 28 eqtr3i 1 2 + 1 2 - 1 3 = 2 3
30 15 29 eqtr3i 1 2 + 1 6 = 2 3
31 14 30 pm3.2i 1 2 1 6 = 1 3 1 2 + 1 6 = 2 3