| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3cn |
⊢ 3 ∈ ℂ |
| 2 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 3 |
1 2
|
reccli |
⊢ ( 1 / 3 ) ∈ ℂ |
| 4 |
|
6cn |
⊢ 6 ∈ ℂ |
| 5 |
|
6re |
⊢ 6 ∈ ℝ |
| 6 |
|
6pos |
⊢ 0 < 6 |
| 7 |
5 6
|
gt0ne0ii |
⊢ 6 ≠ 0 |
| 8 |
4 7
|
reccli |
⊢ ( 1 / 6 ) ∈ ℂ |
| 9 |
|
halfcn |
⊢ ( 1 / 2 ) ∈ ℂ |
| 10 |
3 9
|
pncan3i |
⊢ ( ( 1 / 3 ) + ( ( 1 / 2 ) − ( 1 / 3 ) ) ) = ( 1 / 2 ) |
| 11 |
|
halfthird |
⊢ ( ( 1 / 2 ) − ( 1 / 3 ) ) = ( 1 / 6 ) |
| 12 |
11
|
oveq2i |
⊢ ( ( 1 / 3 ) + ( ( 1 / 2 ) − ( 1 / 3 ) ) ) = ( ( 1 / 3 ) + ( 1 / 6 ) ) |
| 13 |
10 12
|
eqtr3i |
⊢ ( 1 / 2 ) = ( ( 1 / 3 ) + ( 1 / 6 ) ) |
| 14 |
3 8 13
|
mvrraddi |
⊢ ( ( 1 / 2 ) − ( 1 / 6 ) ) = ( 1 / 3 ) |
| 15 |
11
|
oveq2i |
⊢ ( ( 1 / 2 ) + ( ( 1 / 2 ) − ( 1 / 3 ) ) ) = ( ( 1 / 2 ) + ( 1 / 6 ) ) |
| 16 |
9 9 3
|
addsubassi |
⊢ ( ( ( 1 / 2 ) + ( 1 / 2 ) ) − ( 1 / 3 ) ) = ( ( 1 / 2 ) + ( ( 1 / 2 ) − ( 1 / 3 ) ) ) |
| 17 |
|
2cn |
⊢ 2 ∈ ℂ |
| 18 |
17 1 2
|
divcli |
⊢ ( 2 / 3 ) ∈ ℂ |
| 19 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 20 |
|
2halves |
⊢ ( 1 ∈ ℂ → ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 ) |
| 21 |
19 20
|
ax-mp |
⊢ ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 |
| 22 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
| 23 |
22
|
oveq1i |
⊢ ( ( 2 + 1 ) / 3 ) = ( 3 / 3 ) |
| 24 |
1 2
|
dividi |
⊢ ( 3 / 3 ) = 1 |
| 25 |
23 24
|
eqtri |
⊢ ( ( 2 + 1 ) / 3 ) = 1 |
| 26 |
17 19 1 2
|
divdiri |
⊢ ( ( 2 + 1 ) / 3 ) = ( ( 2 / 3 ) + ( 1 / 3 ) ) |
| 27 |
21 25 26
|
3eqtr2i |
⊢ ( ( 1 / 2 ) + ( 1 / 2 ) ) = ( ( 2 / 3 ) + ( 1 / 3 ) ) |
| 28 |
18 3 27
|
mvrraddi |
⊢ ( ( ( 1 / 2 ) + ( 1 / 2 ) ) − ( 1 / 3 ) ) = ( 2 / 3 ) |
| 29 |
16 28
|
eqtr3i |
⊢ ( ( 1 / 2 ) + ( ( 1 / 2 ) − ( 1 / 3 ) ) ) = ( 2 / 3 ) |
| 30 |
15 29
|
eqtr3i |
⊢ ( ( 1 / 2 ) + ( 1 / 6 ) ) = ( 2 / 3 ) |
| 31 |
14 30
|
pm3.2i |
⊢ ( ( ( 1 / 2 ) − ( 1 / 6 ) ) = ( 1 / 3 ) ∧ ( ( 1 / 2 ) + ( 1 / 6 ) ) = ( 2 / 3 ) ) |