Metamath Proof Explorer


Theorem hartogslem2

Description: Lemma for hartogs . (Contributed by Mario Carneiro, 14-Jan-2013)

Ref Expression
Hypotheses hartogslem.2 F=ry|domrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr
hartogslem.3 R=st|wyzys=fwt=fzwEz
Assertion hartogslem2 AVxOn|xAV

Proof

Step Hyp Ref Expression
1 hartogslem.2 F=ry|domrAIdomrrrdomr×domrrIWedomry=domOrdIsorIdomr
2 hartogslem.3 R=st|wyzys=fwt=fzwEz
3 1 2 hartogslem1 domF𝒫A×AFunFAVranF=xOn|xA
4 3 simp3i AVranF=xOn|xA
5 3 simp2i FunF
6 3 simp1i domF𝒫A×A
7 sqxpexg AVA×AV
8 7 pwexd AV𝒫A×AV
9 ssexg domF𝒫A×A𝒫A×AVdomFV
10 6 8 9 sylancr AVdomFV
11 funex FunFdomFVFV
12 5 10 11 sylancr AVFV
13 rnexg FVranFV
14 12 13 syl AVranFV
15 4 14 eqeltrrd AVxOn|xAV