Step |
Hyp |
Ref |
Expression |
1 |
|
hartogslem.2 |
|
2 |
|
hartogslem.3 |
|
3 |
1
|
dmeqi |
|
4 |
|
dmopab |
|
5 |
3 4
|
eqtri |
|
6 |
|
simp3 |
|
7 |
|
simp1 |
|
8 |
|
xpss12 |
|
9 |
7 7 8
|
syl2anc |
|
10 |
6 9
|
sstrd |
|
11 |
|
velpw |
|
12 |
10 11
|
sylibr |
|
13 |
12
|
ad2antrr |
|
14 |
13
|
exlimiv |
|
15 |
14
|
abssi |
|
16 |
5 15
|
eqsstri |
|
17 |
|
funopab4 |
|
18 |
1
|
funeqi |
|
19 |
17 18
|
mpbir |
|
20 |
1
|
rneqi |
|
21 |
|
rnopab |
|
22 |
20 21
|
eqtri |
|
23 |
|
breq1 |
|
24 |
23
|
elrab |
|
25 |
|
f1f |
|
26 |
25
|
adantl |
|
27 |
26
|
frnd |
|
28 |
|
resss |
|
29 |
|
ssun2 |
|
30 |
28 29
|
sstri |
|
31 |
|
idssxp |
|
32 |
30 31
|
ssini |
|
33 |
32
|
a1i |
|
34 |
|
inss2 |
|
35 |
34
|
a1i |
|
36 |
27 33 35
|
3jca |
|
37 |
|
eloni |
|
38 |
|
ordwe |
|
39 |
37 38
|
syl |
|
40 |
39
|
adantr |
|
41 |
|
f1f1orn |
|
42 |
41
|
adantl |
|
43 |
|
f1oiso |
|
44 |
42 2 43
|
sylancl |
|
45 |
|
isores2 |
|
46 |
44 45
|
sylib |
|
47 |
|
isowe |
|
48 |
46 47
|
syl |
|
49 |
40 48
|
mpbid |
|
50 |
|
weso |
|
51 |
49 50
|
syl |
|
52 |
|
inss2 |
|
53 |
52
|
brel |
|
54 |
53
|
simpld |
|
55 |
|
sonr |
|
56 |
51 54 55
|
syl2an |
|
57 |
56
|
pm2.01da |
|
58 |
57
|
alrimiv |
|
59 |
|
intirr |
|
60 |
58 59
|
sylibr |
|
61 |
|
disj3 |
|
62 |
60 61
|
sylib |
|
63 |
|
weeq1 |
|
64 |
62 63
|
syl |
|
65 |
49 64
|
mpbid |
|
66 |
37
|
adantr |
|
67 |
|
isoeq3 |
|
68 |
62 67
|
syl |
|
69 |
46 68
|
mpbid |
|
70 |
|
vex |
|
71 |
70
|
rnex |
|
72 |
|
exse |
|
73 |
71 72
|
ax-mp |
|
74 |
|
eqid |
|
75 |
74
|
oieu |
|
76 |
65 73 75
|
sylancl |
|
77 |
66 69 76
|
mpbi2and |
|
78 |
77
|
simpld |
|
79 |
71 71
|
xpex |
|
80 |
79
|
inex2 |
|
81 |
|
sseq1 |
|
82 |
34 81
|
mpbiri |
|
83 |
|
dmss |
|
84 |
82 83
|
syl |
|
85 |
|
dmxpid |
|
86 |
84 85
|
sseqtrdi |
|
87 |
|
dmresi |
|
88 |
|
sseq2 |
|
89 |
32 88
|
mpbiri |
|
90 |
|
dmss |
|
91 |
89 90
|
syl |
|
92 |
87 91
|
eqsstrrid |
|
93 |
86 92
|
eqssd |
|
94 |
93
|
sseq1d |
|
95 |
93
|
reseq2d |
|
96 |
|
id |
|
97 |
95 96
|
sseq12d |
|
98 |
93
|
sqxpeqd |
|
99 |
96 98
|
sseq12d |
|
100 |
94 97 99
|
3anbi123d |
|
101 |
|
difeq1 |
|
102 |
|
difun2 |
|
103 |
102
|
ineq1i |
|
104 |
|
indif1 |
|
105 |
|
indif1 |
|
106 |
103 104 105
|
3eqtr3i |
|
107 |
101 106
|
eqtrdi |
|
108 |
|
weeq1 |
|
109 |
107 108
|
syl |
|
110 |
|
weeq2 |
|
111 |
93 110
|
syl |
|
112 |
109 111
|
bitrd |
|
113 |
100 112
|
anbi12d |
|
114 |
|
oieq1 |
|
115 |
107 114
|
syl |
|
116 |
|
oieq2 |
|
117 |
93 116
|
syl |
|
118 |
115 117
|
eqtrd |
|
119 |
118
|
dmeqd |
|
120 |
119
|
eqeq2d |
|
121 |
113 120
|
anbi12d |
|
122 |
80 121
|
spcev |
|
123 |
36 65 78 122
|
syl21anc |
|
124 |
123
|
ex |
|
125 |
124
|
exlimdv |
|
126 |
|
brdomi |
|
127 |
125 126
|
impel |
|
128 |
|
simpr |
|
129 |
|
vex |
|
130 |
129
|
dmex |
|
131 |
|
eqid |
|
132 |
131
|
oion |
|
133 |
130 132
|
ax-mp |
|
134 |
128 133
|
eqeltrdi |
|
135 |
134
|
adantl |
|
136 |
|
simplr |
|
137 |
131
|
oien |
|
138 |
130 136 137
|
sylancr |
|
139 |
128 138
|
eqbrtrd |
|
140 |
|
ssdomg |
|
141 |
|
simpll1 |
|
142 |
140 141
|
impel |
|
143 |
|
endomtr |
|
144 |
139 142 143
|
syl2an2 |
|
145 |
135 144
|
jca |
|
146 |
145
|
ex |
|
147 |
146
|
exlimdv |
|
148 |
127 147
|
impbid2 |
|
149 |
24 148
|
bitrid |
|
150 |
149
|
abbi2dv |
|
151 |
22 150
|
eqtr4id |
|
152 |
16 19 151
|
3pm3.2i |
|