Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|
2 |
|
f1of1 |
|
3 |
|
df-br |
|
4 |
|
eleq2 |
|
5 |
|
fvex |
|
6 |
|
fvex |
|
7 |
|
eqeq1 |
|
8 |
7
|
anbi1d |
|
9 |
8
|
anbi1d |
|
10 |
9
|
2rexbidv |
|
11 |
|
eqeq1 |
|
12 |
11
|
anbi2d |
|
13 |
12
|
anbi1d |
|
14 |
13
|
2rexbidv |
|
15 |
5 6 10 14
|
opelopab |
|
16 |
|
anass |
|
17 |
|
f1fveq |
|
18 |
|
equcom |
|
19 |
17 18
|
bitrdi |
|
20 |
19
|
anassrs |
|
21 |
20
|
anbi1d |
|
22 |
16 21
|
bitrid |
|
23 |
22
|
rexbidv |
|
24 |
|
r19.42v |
|
25 |
23 24
|
bitrdi |
|
26 |
25
|
rexbidva |
|
27 |
|
breq1 |
|
28 |
27
|
anbi2d |
|
29 |
28
|
rexbidv |
|
30 |
29
|
ceqsrexv |
|
31 |
30
|
adantl |
|
32 |
26 31
|
bitrd |
|
33 |
|
f1fveq |
|
34 |
|
equcom |
|
35 |
33 34
|
bitrdi |
|
36 |
35
|
anassrs |
|
37 |
36
|
anbi1d |
|
38 |
37
|
rexbidva |
|
39 |
|
breq2 |
|
40 |
39
|
ceqsrexv |
|
41 |
40
|
adantl |
|
42 |
38 41
|
bitrd |
|
43 |
32 42
|
sylan9bb |
|
44 |
43
|
anandis |
|
45 |
15 44
|
bitrid |
|
46 |
4 45
|
sylan9bbr |
|
47 |
46
|
an32s |
|
48 |
3 47
|
bitr2id |
|
49 |
48
|
ralrimivva |
|
50 |
2 49
|
sylan |
|
51 |
|
df-isom |
|
52 |
1 50 51
|
sylanbrc |
|