Description: Any one-to-one onto function determines an isomorphism with an induced relation S . (Contributed by Mario Carneiro, 9-Mar-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | f1oiso2.1 | |
|
Assertion | f1oiso2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oiso2.1 | |
|
2 | f1ocnvdm | |
|
3 | 2 | adantrr | |
4 | 3 | 3adant3 | |
5 | f1ocnvdm | |
|
6 | 5 | adantrl | |
7 | 6 | 3adant3 | |
8 | f1ocnvfv2 | |
|
9 | 8 | eqcomd | |
10 | f1ocnvfv2 | |
|
11 | 10 | eqcomd | |
12 | 9 11 | anim12dan | |
13 | 12 | 3adant3 | |
14 | simp3 | |
|
15 | fveq2 | |
|
16 | 15 | eqeq2d | |
17 | 16 | anbi2d | |
18 | breq2 | |
|
19 | 17 18 | anbi12d | |
20 | 19 | rspcev | |
21 | 7 13 14 20 | syl12anc | |
22 | fveq2 | |
|
23 | 22 | eqeq2d | |
24 | 23 | anbi1d | |
25 | breq1 | |
|
26 | 24 25 | anbi12d | |
27 | 26 | rexbidv | |
28 | 27 | rspcev | |
29 | 4 21 28 | syl2anc | |
30 | 29 | 3expib | |
31 | simp3ll | |
|
32 | simp1 | |
|
33 | simp2l | |
|
34 | f1of | |
|
35 | 34 | ffvelcdmda | |
36 | 32 33 35 | syl2anc | |
37 | 31 36 | eqeltrd | |
38 | simp3lr | |
|
39 | simp2r | |
|
40 | 34 | ffvelcdmda | |
41 | 32 39 40 | syl2anc | |
42 | 38 41 | eqeltrd | |
43 | simp3r | |
|
44 | 31 | eqcomd | |
45 | f1ocnvfv | |
|
46 | 32 33 45 | syl2anc | |
47 | 44 46 | mpd | |
48 | 38 | eqcomd | |
49 | f1ocnvfv | |
|
50 | 32 39 49 | syl2anc | |
51 | 48 50 | mpd | |
52 | 43 47 51 | 3brtr4d | |
53 | 37 42 52 | jca31 | |
54 | 53 | 3exp | |
55 | 54 | rexlimdvv | |
56 | 30 55 | impbid | |
57 | 56 | opabbidv | |
58 | 1 57 | eqtrid | |
59 | f1oiso | |
|
60 | 58 59 | mpdan | |