Metamath Proof Explorer


Theorem f1oiso2

Description: Any one-to-one onto function determines an isomorphism with an induced relation S . (Contributed by Mario Carneiro, 9-Mar-2013)

Ref Expression
Hypothesis f1oiso2.1 S=xy|xByBH-1xRH-1y
Assertion f1oiso2 H:A1-1 ontoBHIsomR,SAB

Proof

Step Hyp Ref Expression
1 f1oiso2.1 S=xy|xByBH-1xRH-1y
2 f1ocnvdm H:A1-1 ontoBxBH-1xA
3 2 adantrr H:A1-1 ontoBxByBH-1xA
4 3 3adant3 H:A1-1 ontoBxByBH-1xRH-1yH-1xA
5 f1ocnvdm H:A1-1 ontoByBH-1yA
6 5 adantrl H:A1-1 ontoBxByBH-1yA
7 6 3adant3 H:A1-1 ontoBxByBH-1xRH-1yH-1yA
8 f1ocnvfv2 H:A1-1 ontoBxBHH-1x=x
9 8 eqcomd H:A1-1 ontoBxBx=HH-1x
10 f1ocnvfv2 H:A1-1 ontoByBHH-1y=y
11 10 eqcomd H:A1-1 ontoByBy=HH-1y
12 9 11 anim12dan H:A1-1 ontoBxByBx=HH-1xy=HH-1y
13 12 3adant3 H:A1-1 ontoBxByBH-1xRH-1yx=HH-1xy=HH-1y
14 simp3 H:A1-1 ontoBxByBH-1xRH-1yH-1xRH-1y
15 fveq2 w=H-1yHw=HH-1y
16 15 eqeq2d w=H-1yy=Hwy=HH-1y
17 16 anbi2d w=H-1yx=HH-1xy=Hwx=HH-1xy=HH-1y
18 breq2 w=H-1yH-1xRwH-1xRH-1y
19 17 18 anbi12d w=H-1yx=HH-1xy=HwH-1xRwx=HH-1xy=HH-1yH-1xRH-1y
20 19 rspcev H-1yAx=HH-1xy=HH-1yH-1xRH-1ywAx=HH-1xy=HwH-1xRw
21 7 13 14 20 syl12anc H:A1-1 ontoBxByBH-1xRH-1ywAx=HH-1xy=HwH-1xRw
22 fveq2 z=H-1xHz=HH-1x
23 22 eqeq2d z=H-1xx=Hzx=HH-1x
24 23 anbi1d z=H-1xx=Hzy=Hwx=HH-1xy=Hw
25 breq1 z=H-1xzRwH-1xRw
26 24 25 anbi12d z=H-1xx=Hzy=HwzRwx=HH-1xy=HwH-1xRw
27 26 rexbidv z=H-1xwAx=Hzy=HwzRwwAx=HH-1xy=HwH-1xRw
28 27 rspcev H-1xAwAx=HH-1xy=HwH-1xRwzAwAx=Hzy=HwzRw
29 4 21 28 syl2anc H:A1-1 ontoBxByBH-1xRH-1yzAwAx=Hzy=HwzRw
30 29 3expib H:A1-1 ontoBxByBH-1xRH-1yzAwAx=Hzy=HwzRw
31 simp3ll H:A1-1 ontoBzAwAx=Hzy=HwzRwx=Hz
32 simp1 H:A1-1 ontoBzAwAx=Hzy=HwzRwH:A1-1 ontoB
33 simp2l H:A1-1 ontoBzAwAx=Hzy=HwzRwzA
34 f1of H:A1-1 ontoBH:AB
35 34 ffvelcdmda H:A1-1 ontoBzAHzB
36 32 33 35 syl2anc H:A1-1 ontoBzAwAx=Hzy=HwzRwHzB
37 31 36 eqeltrd H:A1-1 ontoBzAwAx=Hzy=HwzRwxB
38 simp3lr H:A1-1 ontoBzAwAx=Hzy=HwzRwy=Hw
39 simp2r H:A1-1 ontoBzAwAx=Hzy=HwzRwwA
40 34 ffvelcdmda H:A1-1 ontoBwAHwB
41 32 39 40 syl2anc H:A1-1 ontoBzAwAx=Hzy=HwzRwHwB
42 38 41 eqeltrd H:A1-1 ontoBzAwAx=Hzy=HwzRwyB
43 simp3r H:A1-1 ontoBzAwAx=Hzy=HwzRwzRw
44 31 eqcomd H:A1-1 ontoBzAwAx=Hzy=HwzRwHz=x
45 f1ocnvfv H:A1-1 ontoBzAHz=xH-1x=z
46 32 33 45 syl2anc H:A1-1 ontoBzAwAx=Hzy=HwzRwHz=xH-1x=z
47 44 46 mpd H:A1-1 ontoBzAwAx=Hzy=HwzRwH-1x=z
48 38 eqcomd H:A1-1 ontoBzAwAx=Hzy=HwzRwHw=y
49 f1ocnvfv H:A1-1 ontoBwAHw=yH-1y=w
50 32 39 49 syl2anc H:A1-1 ontoBzAwAx=Hzy=HwzRwHw=yH-1y=w
51 48 50 mpd H:A1-1 ontoBzAwAx=Hzy=HwzRwH-1y=w
52 43 47 51 3brtr4d H:A1-1 ontoBzAwAx=Hzy=HwzRwH-1xRH-1y
53 37 42 52 jca31 H:A1-1 ontoBzAwAx=Hzy=HwzRwxByBH-1xRH-1y
54 53 3exp H:A1-1 ontoBzAwAx=Hzy=HwzRwxByBH-1xRH-1y
55 54 rexlimdvv H:A1-1 ontoBzAwAx=Hzy=HwzRwxByBH-1xRH-1y
56 30 55 impbid H:A1-1 ontoBxByBH-1xRH-1yzAwAx=Hzy=HwzRw
57 56 opabbidv H:A1-1 ontoBxy|xByBH-1xRH-1y=xy|zAwAx=Hzy=HwzRw
58 1 57 eqtrid H:A1-1 ontoBS=xy|zAwAx=Hzy=HwzRw
59 f1oiso H:A1-1 ontoBS=xy|zAwAx=Hzy=HwzRwHIsomR,SAB
60 58 59 mpdan H:A1-1 ontoBHIsomR,SAB