Step |
Hyp |
Ref |
Expression |
1 |
|
hartogslem.2 |
|- F = { <. r , y >. | ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } |
2 |
|
hartogslem.3 |
|- R = { <. s , t >. | E. w e. y E. z e. y ( ( s = ( f ` w ) /\ t = ( f ` z ) ) /\ w _E z ) } |
3 |
1
|
dmeqi |
|- dom F = dom { <. r , y >. | ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } |
4 |
|
dmopab |
|- dom { <. r , y >. | ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } = { r | E. y ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } |
5 |
3 4
|
eqtri |
|- dom F = { r | E. y ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } |
6 |
|
simp3 |
|- ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) -> r C_ ( dom r X. dom r ) ) |
7 |
|
simp1 |
|- ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) -> dom r C_ A ) |
8 |
|
xpss12 |
|- ( ( dom r C_ A /\ dom r C_ A ) -> ( dom r X. dom r ) C_ ( A X. A ) ) |
9 |
7 7 8
|
syl2anc |
|- ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) -> ( dom r X. dom r ) C_ ( A X. A ) ) |
10 |
6 9
|
sstrd |
|- ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) -> r C_ ( A X. A ) ) |
11 |
|
velpw |
|- ( r e. ~P ( A X. A ) <-> r C_ ( A X. A ) ) |
12 |
10 11
|
sylibr |
|- ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) -> r e. ~P ( A X. A ) ) |
13 |
12
|
ad2antrr |
|- ( ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) -> r e. ~P ( A X. A ) ) |
14 |
13
|
exlimiv |
|- ( E. y ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) -> r e. ~P ( A X. A ) ) |
15 |
14
|
abssi |
|- { r | E. y ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } C_ ~P ( A X. A ) |
16 |
5 15
|
eqsstri |
|- dom F C_ ~P ( A X. A ) |
17 |
|
funopab4 |
|- Fun { <. r , y >. | ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } |
18 |
1
|
funeqi |
|- ( Fun F <-> Fun { <. r , y >. | ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } ) |
19 |
17 18
|
mpbir |
|- Fun F |
20 |
1
|
rneqi |
|- ran F = ran { <. r , y >. | ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } |
21 |
|
rnopab |
|- ran { <. r , y >. | ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } = { y | E. r ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } |
22 |
20 21
|
eqtri |
|- ran F = { y | E. r ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } |
23 |
|
breq1 |
|- ( x = y -> ( x ~<_ A <-> y ~<_ A ) ) |
24 |
23
|
elrab |
|- ( y e. { x e. On | x ~<_ A } <-> ( y e. On /\ y ~<_ A ) ) |
25 |
|
f1f |
|- ( f : y -1-1-> A -> f : y --> A ) |
26 |
25
|
adantl |
|- ( ( y e. On /\ f : y -1-1-> A ) -> f : y --> A ) |
27 |
26
|
frnd |
|- ( ( y e. On /\ f : y -1-1-> A ) -> ran f C_ A ) |
28 |
|
resss |
|- ( _I |` ran f ) C_ _I |
29 |
|
ssun2 |
|- _I C_ ( R u. _I ) |
30 |
28 29
|
sstri |
|- ( _I |` ran f ) C_ ( R u. _I ) |
31 |
|
idssxp |
|- ( _I |` ran f ) C_ ( ran f X. ran f ) |
32 |
30 31
|
ssini |
|- ( _I |` ran f ) C_ ( ( R u. _I ) i^i ( ran f X. ran f ) ) |
33 |
32
|
a1i |
|- ( ( y e. On /\ f : y -1-1-> A ) -> ( _I |` ran f ) C_ ( ( R u. _I ) i^i ( ran f X. ran f ) ) ) |
34 |
|
inss2 |
|- ( ( R u. _I ) i^i ( ran f X. ran f ) ) C_ ( ran f X. ran f ) |
35 |
34
|
a1i |
|- ( ( y e. On /\ f : y -1-1-> A ) -> ( ( R u. _I ) i^i ( ran f X. ran f ) ) C_ ( ran f X. ran f ) ) |
36 |
27 33 35
|
3jca |
|- ( ( y e. On /\ f : y -1-1-> A ) -> ( ran f C_ A /\ ( _I |` ran f ) C_ ( ( R u. _I ) i^i ( ran f X. ran f ) ) /\ ( ( R u. _I ) i^i ( ran f X. ran f ) ) C_ ( ran f X. ran f ) ) ) |
37 |
|
eloni |
|- ( y e. On -> Ord y ) |
38 |
|
ordwe |
|- ( Ord y -> _E We y ) |
39 |
37 38
|
syl |
|- ( y e. On -> _E We y ) |
40 |
39
|
adantr |
|- ( ( y e. On /\ f : y -1-1-> A ) -> _E We y ) |
41 |
|
f1f1orn |
|- ( f : y -1-1-> A -> f : y -1-1-onto-> ran f ) |
42 |
41
|
adantl |
|- ( ( y e. On /\ f : y -1-1-> A ) -> f : y -1-1-onto-> ran f ) |
43 |
|
f1oiso |
|- ( ( f : y -1-1-onto-> ran f /\ R = { <. s , t >. | E. w e. y E. z e. y ( ( s = ( f ` w ) /\ t = ( f ` z ) ) /\ w _E z ) } ) -> f Isom _E , R ( y , ran f ) ) |
44 |
42 2 43
|
sylancl |
|- ( ( y e. On /\ f : y -1-1-> A ) -> f Isom _E , R ( y , ran f ) ) |
45 |
|
isores2 |
|- ( f Isom _E , R ( y , ran f ) <-> f Isom _E , ( R i^i ( ran f X. ran f ) ) ( y , ran f ) ) |
46 |
44 45
|
sylib |
|- ( ( y e. On /\ f : y -1-1-> A ) -> f Isom _E , ( R i^i ( ran f X. ran f ) ) ( y , ran f ) ) |
47 |
|
isowe |
|- ( f Isom _E , ( R i^i ( ran f X. ran f ) ) ( y , ran f ) -> ( _E We y <-> ( R i^i ( ran f X. ran f ) ) We ran f ) ) |
48 |
46 47
|
syl |
|- ( ( y e. On /\ f : y -1-1-> A ) -> ( _E We y <-> ( R i^i ( ran f X. ran f ) ) We ran f ) ) |
49 |
40 48
|
mpbid |
|- ( ( y e. On /\ f : y -1-1-> A ) -> ( R i^i ( ran f X. ran f ) ) We ran f ) |
50 |
|
weso |
|- ( ( R i^i ( ran f X. ran f ) ) We ran f -> ( R i^i ( ran f X. ran f ) ) Or ran f ) |
51 |
49 50
|
syl |
|- ( ( y e. On /\ f : y -1-1-> A ) -> ( R i^i ( ran f X. ran f ) ) Or ran f ) |
52 |
|
inss2 |
|- ( R i^i ( ran f X. ran f ) ) C_ ( ran f X. ran f ) |
53 |
52
|
brel |
|- ( x ( R i^i ( ran f X. ran f ) ) x -> ( x e. ran f /\ x e. ran f ) ) |
54 |
53
|
simpld |
|- ( x ( R i^i ( ran f X. ran f ) ) x -> x e. ran f ) |
55 |
|
sonr |
|- ( ( ( R i^i ( ran f X. ran f ) ) Or ran f /\ x e. ran f ) -> -. x ( R i^i ( ran f X. ran f ) ) x ) |
56 |
51 54 55
|
syl2an |
|- ( ( ( y e. On /\ f : y -1-1-> A ) /\ x ( R i^i ( ran f X. ran f ) ) x ) -> -. x ( R i^i ( ran f X. ran f ) ) x ) |
57 |
56
|
pm2.01da |
|- ( ( y e. On /\ f : y -1-1-> A ) -> -. x ( R i^i ( ran f X. ran f ) ) x ) |
58 |
57
|
alrimiv |
|- ( ( y e. On /\ f : y -1-1-> A ) -> A. x -. x ( R i^i ( ran f X. ran f ) ) x ) |
59 |
|
intirr |
|- ( ( ( R i^i ( ran f X. ran f ) ) i^i _I ) = (/) <-> A. x -. x ( R i^i ( ran f X. ran f ) ) x ) |
60 |
58 59
|
sylibr |
|- ( ( y e. On /\ f : y -1-1-> A ) -> ( ( R i^i ( ran f X. ran f ) ) i^i _I ) = (/) ) |
61 |
|
disj3 |
|- ( ( ( R i^i ( ran f X. ran f ) ) i^i _I ) = (/) <-> ( R i^i ( ran f X. ran f ) ) = ( ( R i^i ( ran f X. ran f ) ) \ _I ) ) |
62 |
60 61
|
sylib |
|- ( ( y e. On /\ f : y -1-1-> A ) -> ( R i^i ( ran f X. ran f ) ) = ( ( R i^i ( ran f X. ran f ) ) \ _I ) ) |
63 |
|
weeq1 |
|- ( ( R i^i ( ran f X. ran f ) ) = ( ( R i^i ( ran f X. ran f ) ) \ _I ) -> ( ( R i^i ( ran f X. ran f ) ) We ran f <-> ( ( R i^i ( ran f X. ran f ) ) \ _I ) We ran f ) ) |
64 |
62 63
|
syl |
|- ( ( y e. On /\ f : y -1-1-> A ) -> ( ( R i^i ( ran f X. ran f ) ) We ran f <-> ( ( R i^i ( ran f X. ran f ) ) \ _I ) We ran f ) ) |
65 |
49 64
|
mpbid |
|- ( ( y e. On /\ f : y -1-1-> A ) -> ( ( R i^i ( ran f X. ran f ) ) \ _I ) We ran f ) |
66 |
37
|
adantr |
|- ( ( y e. On /\ f : y -1-1-> A ) -> Ord y ) |
67 |
|
isoeq3 |
|- ( ( R i^i ( ran f X. ran f ) ) = ( ( R i^i ( ran f X. ran f ) ) \ _I ) -> ( f Isom _E , ( R i^i ( ran f X. ran f ) ) ( y , ran f ) <-> f Isom _E , ( ( R i^i ( ran f X. ran f ) ) \ _I ) ( y , ran f ) ) ) |
68 |
62 67
|
syl |
|- ( ( y e. On /\ f : y -1-1-> A ) -> ( f Isom _E , ( R i^i ( ran f X. ran f ) ) ( y , ran f ) <-> f Isom _E , ( ( R i^i ( ran f X. ran f ) ) \ _I ) ( y , ran f ) ) ) |
69 |
46 68
|
mpbid |
|- ( ( y e. On /\ f : y -1-1-> A ) -> f Isom _E , ( ( R i^i ( ran f X. ran f ) ) \ _I ) ( y , ran f ) ) |
70 |
|
vex |
|- f e. _V |
71 |
70
|
rnex |
|- ran f e. _V |
72 |
|
exse |
|- ( ran f e. _V -> ( ( R i^i ( ran f X. ran f ) ) \ _I ) Se ran f ) |
73 |
71 72
|
ax-mp |
|- ( ( R i^i ( ran f X. ran f ) ) \ _I ) Se ran f |
74 |
|
eqid |
|- OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) = OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) |
75 |
74
|
oieu |
|- ( ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) We ran f /\ ( ( R i^i ( ran f X. ran f ) ) \ _I ) Se ran f ) -> ( ( Ord y /\ f Isom _E , ( ( R i^i ( ran f X. ran f ) ) \ _I ) ( y , ran f ) ) <-> ( y = dom OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) /\ f = OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) ) ) ) |
76 |
65 73 75
|
sylancl |
|- ( ( y e. On /\ f : y -1-1-> A ) -> ( ( Ord y /\ f Isom _E , ( ( R i^i ( ran f X. ran f ) ) \ _I ) ( y , ran f ) ) <-> ( y = dom OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) /\ f = OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) ) ) ) |
77 |
66 69 76
|
mpbi2and |
|- ( ( y e. On /\ f : y -1-1-> A ) -> ( y = dom OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) /\ f = OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) ) ) |
78 |
77
|
simpld |
|- ( ( y e. On /\ f : y -1-1-> A ) -> y = dom OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) ) |
79 |
71 71
|
xpex |
|- ( ran f X. ran f ) e. _V |
80 |
79
|
inex2 |
|- ( ( R u. _I ) i^i ( ran f X. ran f ) ) e. _V |
81 |
|
sseq1 |
|- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( r C_ ( ran f X. ran f ) <-> ( ( R u. _I ) i^i ( ran f X. ran f ) ) C_ ( ran f X. ran f ) ) ) |
82 |
34 81
|
mpbiri |
|- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> r C_ ( ran f X. ran f ) ) |
83 |
|
dmss |
|- ( r C_ ( ran f X. ran f ) -> dom r C_ dom ( ran f X. ran f ) ) |
84 |
82 83
|
syl |
|- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> dom r C_ dom ( ran f X. ran f ) ) |
85 |
|
dmxpid |
|- dom ( ran f X. ran f ) = ran f |
86 |
84 85
|
sseqtrdi |
|- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> dom r C_ ran f ) |
87 |
|
dmresi |
|- dom ( _I |` ran f ) = ran f |
88 |
|
sseq2 |
|- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( ( _I |` ran f ) C_ r <-> ( _I |` ran f ) C_ ( ( R u. _I ) i^i ( ran f X. ran f ) ) ) ) |
89 |
32 88
|
mpbiri |
|- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( _I |` ran f ) C_ r ) |
90 |
|
dmss |
|- ( ( _I |` ran f ) C_ r -> dom ( _I |` ran f ) C_ dom r ) |
91 |
89 90
|
syl |
|- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> dom ( _I |` ran f ) C_ dom r ) |
92 |
87 91
|
eqsstrrid |
|- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ran f C_ dom r ) |
93 |
86 92
|
eqssd |
|- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> dom r = ran f ) |
94 |
93
|
sseq1d |
|- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( dom r C_ A <-> ran f C_ A ) ) |
95 |
93
|
reseq2d |
|- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( _I |` dom r ) = ( _I |` ran f ) ) |
96 |
|
id |
|- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) ) |
97 |
95 96
|
sseq12d |
|- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( ( _I |` dom r ) C_ r <-> ( _I |` ran f ) C_ ( ( R u. _I ) i^i ( ran f X. ran f ) ) ) ) |
98 |
93
|
sqxpeqd |
|- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( dom r X. dom r ) = ( ran f X. ran f ) ) |
99 |
96 98
|
sseq12d |
|- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( r C_ ( dom r X. dom r ) <-> ( ( R u. _I ) i^i ( ran f X. ran f ) ) C_ ( ran f X. ran f ) ) ) |
100 |
94 97 99
|
3anbi123d |
|- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) <-> ( ran f C_ A /\ ( _I |` ran f ) C_ ( ( R u. _I ) i^i ( ran f X. ran f ) ) /\ ( ( R u. _I ) i^i ( ran f X. ran f ) ) C_ ( ran f X. ran f ) ) ) ) |
101 |
|
difeq1 |
|- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( r \ _I ) = ( ( ( R u. _I ) i^i ( ran f X. ran f ) ) \ _I ) ) |
102 |
|
difun2 |
|- ( ( R u. _I ) \ _I ) = ( R \ _I ) |
103 |
102
|
ineq1i |
|- ( ( ( R u. _I ) \ _I ) i^i ( ran f X. ran f ) ) = ( ( R \ _I ) i^i ( ran f X. ran f ) ) |
104 |
|
indif1 |
|- ( ( ( R u. _I ) \ _I ) i^i ( ran f X. ran f ) ) = ( ( ( R u. _I ) i^i ( ran f X. ran f ) ) \ _I ) |
105 |
|
indif1 |
|- ( ( R \ _I ) i^i ( ran f X. ran f ) ) = ( ( R i^i ( ran f X. ran f ) ) \ _I ) |
106 |
103 104 105
|
3eqtr3i |
|- ( ( ( R u. _I ) i^i ( ran f X. ran f ) ) \ _I ) = ( ( R i^i ( ran f X. ran f ) ) \ _I ) |
107 |
101 106
|
eqtrdi |
|- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( r \ _I ) = ( ( R i^i ( ran f X. ran f ) ) \ _I ) ) |
108 |
|
weeq1 |
|- ( ( r \ _I ) = ( ( R i^i ( ran f X. ran f ) ) \ _I ) -> ( ( r \ _I ) We dom r <-> ( ( R i^i ( ran f X. ran f ) ) \ _I ) We dom r ) ) |
109 |
107 108
|
syl |
|- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( ( r \ _I ) We dom r <-> ( ( R i^i ( ran f X. ran f ) ) \ _I ) We dom r ) ) |
110 |
|
weeq2 |
|- ( dom r = ran f -> ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) We dom r <-> ( ( R i^i ( ran f X. ran f ) ) \ _I ) We ran f ) ) |
111 |
93 110
|
syl |
|- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) We dom r <-> ( ( R i^i ( ran f X. ran f ) ) \ _I ) We ran f ) ) |
112 |
109 111
|
bitrd |
|- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( ( r \ _I ) We dom r <-> ( ( R i^i ( ran f X. ran f ) ) \ _I ) We ran f ) ) |
113 |
100 112
|
anbi12d |
|- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) <-> ( ( ran f C_ A /\ ( _I |` ran f ) C_ ( ( R u. _I ) i^i ( ran f X. ran f ) ) /\ ( ( R u. _I ) i^i ( ran f X. ran f ) ) C_ ( ran f X. ran f ) ) /\ ( ( R i^i ( ran f X. ran f ) ) \ _I ) We ran f ) ) ) |
114 |
|
oieq1 |
|- ( ( r \ _I ) = ( ( R i^i ( ran f X. ran f ) ) \ _I ) -> OrdIso ( ( r \ _I ) , dom r ) = OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , dom r ) ) |
115 |
107 114
|
syl |
|- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> OrdIso ( ( r \ _I ) , dom r ) = OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , dom r ) ) |
116 |
|
oieq2 |
|- ( dom r = ran f -> OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , dom r ) = OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) ) |
117 |
93 116
|
syl |
|- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , dom r ) = OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) ) |
118 |
115 117
|
eqtrd |
|- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> OrdIso ( ( r \ _I ) , dom r ) = OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) ) |
119 |
118
|
dmeqd |
|- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> dom OrdIso ( ( r \ _I ) , dom r ) = dom OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) ) |
120 |
119
|
eqeq2d |
|- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( y = dom OrdIso ( ( r \ _I ) , dom r ) <-> y = dom OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) ) ) |
121 |
113 120
|
anbi12d |
|- ( r = ( ( R u. _I ) i^i ( ran f X. ran f ) ) -> ( ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) <-> ( ( ( ran f C_ A /\ ( _I |` ran f ) C_ ( ( R u. _I ) i^i ( ran f X. ran f ) ) /\ ( ( R u. _I ) i^i ( ran f X. ran f ) ) C_ ( ran f X. ran f ) ) /\ ( ( R i^i ( ran f X. ran f ) ) \ _I ) We ran f ) /\ y = dom OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) ) ) ) |
122 |
80 121
|
spcev |
|- ( ( ( ( ran f C_ A /\ ( _I |` ran f ) C_ ( ( R u. _I ) i^i ( ran f X. ran f ) ) /\ ( ( R u. _I ) i^i ( ran f X. ran f ) ) C_ ( ran f X. ran f ) ) /\ ( ( R i^i ( ran f X. ran f ) ) \ _I ) We ran f ) /\ y = dom OrdIso ( ( ( R i^i ( ran f X. ran f ) ) \ _I ) , ran f ) ) -> E. r ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) ) |
123 |
36 65 78 122
|
syl21anc |
|- ( ( y e. On /\ f : y -1-1-> A ) -> E. r ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) ) |
124 |
123
|
ex |
|- ( y e. On -> ( f : y -1-1-> A -> E. r ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) ) ) |
125 |
124
|
exlimdv |
|- ( y e. On -> ( E. f f : y -1-1-> A -> E. r ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) ) ) |
126 |
|
brdomi |
|- ( y ~<_ A -> E. f f : y -1-1-> A ) |
127 |
125 126
|
impel |
|- ( ( y e. On /\ y ~<_ A ) -> E. r ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) ) |
128 |
|
simpr |
|- ( ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) -> y = dom OrdIso ( ( r \ _I ) , dom r ) ) |
129 |
|
vex |
|- r e. _V |
130 |
129
|
dmex |
|- dom r e. _V |
131 |
|
eqid |
|- OrdIso ( ( r \ _I ) , dom r ) = OrdIso ( ( r \ _I ) , dom r ) |
132 |
131
|
oion |
|- ( dom r e. _V -> dom OrdIso ( ( r \ _I ) , dom r ) e. On ) |
133 |
130 132
|
ax-mp |
|- dom OrdIso ( ( r \ _I ) , dom r ) e. On |
134 |
128 133
|
eqeltrdi |
|- ( ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) -> y e. On ) |
135 |
134
|
adantl |
|- ( ( A e. V /\ ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) ) -> y e. On ) |
136 |
|
simplr |
|- ( ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) -> ( r \ _I ) We dom r ) |
137 |
131
|
oien |
|- ( ( dom r e. _V /\ ( r \ _I ) We dom r ) -> dom OrdIso ( ( r \ _I ) , dom r ) ~~ dom r ) |
138 |
130 136 137
|
sylancr |
|- ( ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) -> dom OrdIso ( ( r \ _I ) , dom r ) ~~ dom r ) |
139 |
128 138
|
eqbrtrd |
|- ( ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) -> y ~~ dom r ) |
140 |
|
ssdomg |
|- ( A e. V -> ( dom r C_ A -> dom r ~<_ A ) ) |
141 |
|
simpll1 |
|- ( ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) -> dom r C_ A ) |
142 |
140 141
|
impel |
|- ( ( A e. V /\ ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) ) -> dom r ~<_ A ) |
143 |
|
endomtr |
|- ( ( y ~~ dom r /\ dom r ~<_ A ) -> y ~<_ A ) |
144 |
139 142 143
|
syl2an2 |
|- ( ( A e. V /\ ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) ) -> y ~<_ A ) |
145 |
135 144
|
jca |
|- ( ( A e. V /\ ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) ) -> ( y e. On /\ y ~<_ A ) ) |
146 |
145
|
ex |
|- ( A e. V -> ( ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) -> ( y e. On /\ y ~<_ A ) ) ) |
147 |
146
|
exlimdv |
|- ( A e. V -> ( E. r ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) -> ( y e. On /\ y ~<_ A ) ) ) |
148 |
127 147
|
impbid2 |
|- ( A e. V -> ( ( y e. On /\ y ~<_ A ) <-> E. r ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) ) ) |
149 |
24 148
|
bitrid |
|- ( A e. V -> ( y e. { x e. On | x ~<_ A } <-> E. r ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) ) ) |
150 |
149
|
abbi2dv |
|- ( A e. V -> { x e. On | x ~<_ A } = { y | E. r ( ( ( dom r C_ A /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } ) |
151 |
22 150
|
eqtr4id |
|- ( A e. V -> ran F = { x e. On | x ~<_ A } ) |
152 |
16 19 151
|
3pm3.2i |
|- ( dom F C_ ~P ( A X. A ) /\ Fun F /\ ( A e. V -> ran F = { x e. On | x ~<_ A } ) ) |