Metamath Proof Explorer


Theorem harword

Description: Weak ordering property of the Hartogs function. (Contributed by Stefan O'Rear, 14-Feb-2015)

Ref Expression
Assertion harword XYharXharY

Proof

Step Hyp Ref Expression
1 domtr yXXYyY
2 1 expcom XYyXyY
3 2 adantr XYyOnyXyY
4 3 ss2rabdv XYyOn|yXyOn|yY
5 reldom Rel
6 5 brrelex1i XYXV
7 harval XVharX=yOn|yX
8 6 7 syl XYharX=yOn|yX
9 5 brrelex2i XYYV
10 harval YVharY=yOn|yY
11 9 10 syl XYharY=yOn|yY
12 4 8 11 3sstr4d XYharXharY