Metamath Proof Explorer


Theorem hashnfinnn0

Description: The size of an infinite set is not a nonnegative integer. (Contributed by Alexander van der Vekens, 21-Dec-2017) (Proof shortened by Alexander van der Vekens, 18-Jan-2018)

Ref Expression
Assertion hashnfinnn0 A V ¬ A Fin A 0

Proof

Step Hyp Ref Expression
1 nnel ¬ A 0 A 0
2 hashclb A V A Fin A 0
3 2 biimprd A V A 0 A Fin
4 1 3 syl5bi A V ¬ A 0 A Fin
5 4 con1d A V ¬ A Fin A 0
6 5 imp A V ¬ A Fin A 0