Metamath Proof Explorer


Theorem hashrabrex

Description: The number of elements in a class abstraction with a restricted existential quantification. (Contributed by Alexander van der Vekens, 29-Jul-2018)

Ref Expression
Hypotheses hashrabrex.1 φYFin
hashrabrex.2 φyYxX|ψFin
hashrabrex.3 φDisjyYxX|ψ
Assertion hashrabrex φxX|yYψ=yYxX|ψ

Proof

Step Hyp Ref Expression
1 hashrabrex.1 φYFin
2 hashrabrex.2 φyYxX|ψFin
3 hashrabrex.3 φDisjyYxX|ψ
4 iunrab yYxX|ψ=xX|yYψ
5 4 eqcomi xX|yYψ=yYxX|ψ
6 5 fveq2i xX|yYψ=yYxX|ψ
7 1 2 3 hashiun φyYxX|ψ=yYxX|ψ
8 6 7 eqtrid φxX|yYψ=yYxX|ψ