Metamath Proof Explorer


Theorem hashuni

Description: The cardinality of a disjoint union. (Contributed by Mario Carneiro, 24-Jan-2015)

Ref Expression
Hypotheses hashuni.1 φAFin
hashuni.2 φAFin
hashuni.3 φDisjxAx
Assertion hashuni φA=xAx

Proof

Step Hyp Ref Expression
1 hashuni.1 φAFin
2 hashuni.2 φAFin
3 hashuni.3 φDisjxAx
4 uniiun A=xAx
5 4 fveq2i A=xAx
6 2 sselda φxAxFin
7 1 6 3 hashiun φxAx=xAx
8 5 7 eqtrid φA=xAx