Description: The cardinality of a disjoint union. (Contributed by Mario Carneiro, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hashuni.1 | |- ( ph -> A e. Fin ) |
|
| hashuni.2 | |- ( ph -> A C_ Fin ) |
||
| hashuni.3 | |- ( ph -> Disj_ x e. A x ) |
||
| Assertion | hashuni | |- ( ph -> ( # ` U. A ) = sum_ x e. A ( # ` x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashuni.1 | |- ( ph -> A e. Fin ) |
|
| 2 | hashuni.2 | |- ( ph -> A C_ Fin ) |
|
| 3 | hashuni.3 | |- ( ph -> Disj_ x e. A x ) |
|
| 4 | uniiun | |- U. A = U_ x e. A x |
|
| 5 | 4 | fveq2i | |- ( # ` U. A ) = ( # ` U_ x e. A x ) |
| 6 | 2 | sselda | |- ( ( ph /\ x e. A ) -> x e. Fin ) |
| 7 | 1 6 3 | hashiun | |- ( ph -> ( # ` U_ x e. A x ) = sum_ x e. A ( # ` x ) ) |
| 8 | 5 7 | eqtrid | |- ( ph -> ( # ` U. A ) = sum_ x e. A ( # ` x ) ) |