Metamath Proof Explorer


Theorem hbimtg

Description: A more general and closed form of hbim . (Contributed by Scott Fenton, 13-Dec-2010)

Ref Expression
Assertion hbimtg xφxχψxθχψxφθ

Proof

Step Hyp Ref Expression
1 hbntg xφxχ¬χx¬φ
2 pm2.21 ¬φφθ
3 2 alimi x¬φxφθ
4 1 3 syl6 xφxχ¬χxφθ
5 4 adantr xφxχψxθ¬χxφθ
6 ala1 xθxφθ
7 6 imim2i ψxθψxφθ
8 7 adantl xφxχψxθψxφθ
9 5 8 jad xφxχψxθχψxφθ