Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Hypothesis builders
hbimtg
Next ⟩
hbaltg
Metamath Proof Explorer
Ascii
Unicode
Theorem
hbimtg
Description:
A more general and closed form of
hbim
.
(Contributed by
Scott Fenton
, 13-Dec-2010)
Ref
Expression
Assertion
hbimtg
⊢
∀
x
φ
→
∀
x
χ
∧
ψ
→
∀
x
θ
→
χ
→
ψ
→
∀
x
φ
→
θ
Proof
Step
Hyp
Ref
Expression
1
hbntg
⊢
∀
x
φ
→
∀
x
χ
→
¬
χ
→
∀
x
¬
φ
2
pm2.21
⊢
¬
φ
→
φ
→
θ
3
2
alimi
⊢
∀
x
¬
φ
→
∀
x
φ
→
θ
4
1
3
syl6
⊢
∀
x
φ
→
∀
x
χ
→
¬
χ
→
∀
x
φ
→
θ
5
4
adantr
⊢
∀
x
φ
→
∀
x
χ
∧
ψ
→
∀
x
θ
→
¬
χ
→
∀
x
φ
→
θ
6
ala1
⊢
∀
x
θ
→
∀
x
φ
→
θ
7
6
imim2i
⊢
ψ
→
∀
x
θ
→
ψ
→
∀
x
φ
→
θ
8
7
adantl
⊢
∀
x
φ
→
∀
x
χ
∧
ψ
→
∀
x
θ
→
ψ
→
∀
x
φ
→
θ
9
5
8
jad
⊢
∀
x
φ
→
∀
x
χ
∧
ψ
→
∀
x
θ
→
χ
→
ψ
→
∀
x
φ
→
θ