Metamath Proof Explorer


Theorem hdmap1euOLDN

Description: Convert mapdh9aOLDN to use the HDMap1 notation. (Contributed by NM, 15-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmap1eu.h H = LHyp K
hdmap1eu.u U = DVecH K W
hdmap1eu.v V = Base U
hdmap1eu.o 0 ˙ = 0 U
hdmap1eu.n N = LSpan U
hdmap1eu.c C = LCDual K W
hdmap1eu.d D = Base C
hdmap1eu.l L = LSpan C
hdmap1eu.m M = mapd K W
hdmap1eu.i I = HDMap1 K W
hdmap1eu.k φ K HL W H
hdmap1eu.mn φ M N X = L F
hdmap1eu.x φ X V 0 ˙
hdmap1eu.f φ F D
hdmap1eu.t φ T V
Assertion hdmap1euOLDN φ ∃! y D z V ¬ z N X T y = I z I X F z T

Proof

Step Hyp Ref Expression
1 hdmap1eu.h H = LHyp K
2 hdmap1eu.u U = DVecH K W
3 hdmap1eu.v V = Base U
4 hdmap1eu.o 0 ˙ = 0 U
5 hdmap1eu.n N = LSpan U
6 hdmap1eu.c C = LCDual K W
7 hdmap1eu.d D = Base C
8 hdmap1eu.l L = LSpan C
9 hdmap1eu.m M = mapd K W
10 hdmap1eu.i I = HDMap1 K W
11 hdmap1eu.k φ K HL W H
12 hdmap1eu.mn φ M N X = L F
13 hdmap1eu.x φ X V 0 ˙
14 hdmap1eu.f φ F D
15 hdmap1eu.t φ T V
16 eqid - U = - U
17 eqid - C = - C
18 eqid 0 C = 0 C
19 eqid x V if 2 nd x = 0 ˙ 0 C ι h D | M N 2 nd x = L h M N 1 st 1 st x - U 2 nd x = L 2 nd 1 st x - C h = x V if 2 nd x = 0 ˙ 0 C ι h D | M N 2 nd x = L h M N 1 st 1 st x - U 2 nd x = L 2 nd 1 st x - C h
20 19 hdmap1cbv x V if 2 nd x = 0 ˙ 0 C ι h D | M N 2 nd x = L h M N 1 st 1 st x - U 2 nd x = L 2 nd 1 st x - C h = w V if 2 nd w = 0 ˙ 0 C ι g D | M N 2 nd w = L g M N 1 st 1 st w - U 2 nd w = L 2 nd 1 st w - C g
21 1 2 3 16 4 5 6 7 17 18 8 9 10 11 12 13 14 15 20 hdmap1eulemOLDN φ ∃! y D z V ¬ z N X T y = I z I X F z T