Metamath Proof Explorer


Theorem hhcmpl

Description: Lemma used for derivation of the completeness axiom ax-hcompl from ZFC Hilbert space theory. (Contributed by NM, 9-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hhlm.1 U = + norm
hhlm.2 D = IndMet U
hhlm.3 J = MetOpen D
hhcmpl.c F Cau D x F t J x
Assertion hhcmpl F Cauchy x F v x

Proof

Step Hyp Ref Expression
1 hhlm.1 U = + norm
2 hhlm.2 D = IndMet U
3 hhlm.3 J = MetOpen D
4 hhcmpl.c F Cau D x F t J x
5 4 anim1ci F Cau D F F x F t J x
6 elin F Cau D F Cau D F
7 r19.42v x F F t J x F x F t J x
8 5 6 7 3imtr4i F Cau D x F F t J x
9 1 2 hhcau Cauchy = Cau D
10 9 eleq2i F Cauchy F Cau D
11 1 2 3 hhlm v = t J
12 11 breqi F v x F t J x
13 vex x V
14 13 brresi F t J x F F t J x
15 12 14 bitri F v x F F t J x
16 15 rexbii x F v x x F F t J x
17 8 10 16 3imtr4i F Cauchy x F v x