Metamath Proof Explorer


Theorem hhcmpl

Description: Lemma used for derivation of the completeness axiom ax-hcompl from ZFC Hilbert space theory. (Contributed by NM, 9-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hhlm.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
hhlm.2 𝐷 = ( IndMet ‘ 𝑈 )
hhlm.3 𝐽 = ( MetOpen ‘ 𝐷 )
hhcmpl.c ( 𝐹 ∈ ( Cau ‘ 𝐷 ) → ∃ 𝑥 ∈ ℋ 𝐹 ( ⇝𝑡𝐽 ) 𝑥 )
Assertion hhcmpl ( 𝐹 ∈ Cauchy → ∃ 𝑥 ∈ ℋ 𝐹𝑣 𝑥 )

Proof

Step Hyp Ref Expression
1 hhlm.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
2 hhlm.2 𝐷 = ( IndMet ‘ 𝑈 )
3 hhlm.3 𝐽 = ( MetOpen ‘ 𝐷 )
4 hhcmpl.c ( 𝐹 ∈ ( Cau ‘ 𝐷 ) → ∃ 𝑥 ∈ ℋ 𝐹 ( ⇝𝑡𝐽 ) 𝑥 )
5 4 anim1ci ( ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ∧ 𝐹 ∈ ( ℋ ↑m ℕ ) ) → ( 𝐹 ∈ ( ℋ ↑m ℕ ) ∧ ∃ 𝑥 ∈ ℋ 𝐹 ( ⇝𝑡𝐽 ) 𝑥 ) )
6 elin ( 𝐹 ∈ ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) ↔ ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ∧ 𝐹 ∈ ( ℋ ↑m ℕ ) ) )
7 r19.42v ( ∃ 𝑥 ∈ ℋ ( 𝐹 ∈ ( ℋ ↑m ℕ ) ∧ 𝐹 ( ⇝𝑡𝐽 ) 𝑥 ) ↔ ( 𝐹 ∈ ( ℋ ↑m ℕ ) ∧ ∃ 𝑥 ∈ ℋ 𝐹 ( ⇝𝑡𝐽 ) 𝑥 ) )
8 5 6 7 3imtr4i ( 𝐹 ∈ ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) → ∃ 𝑥 ∈ ℋ ( 𝐹 ∈ ( ℋ ↑m ℕ ) ∧ 𝐹 ( ⇝𝑡𝐽 ) 𝑥 ) )
9 1 2 hhcau Cauchy = ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) )
10 9 eleq2i ( 𝐹 ∈ Cauchy ↔ 𝐹 ∈ ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) )
11 1 2 3 hhlm 𝑣 = ( ( ⇝𝑡𝐽 ) ↾ ( ℋ ↑m ℕ ) )
12 11 breqi ( 𝐹𝑣 𝑥𝐹 ( ( ⇝𝑡𝐽 ) ↾ ( ℋ ↑m ℕ ) ) 𝑥 )
13 vex 𝑥 ∈ V
14 13 brresi ( 𝐹 ( ( ⇝𝑡𝐽 ) ↾ ( ℋ ↑m ℕ ) ) 𝑥 ↔ ( 𝐹 ∈ ( ℋ ↑m ℕ ) ∧ 𝐹 ( ⇝𝑡𝐽 ) 𝑥 ) )
15 12 14 bitri ( 𝐹𝑣 𝑥 ↔ ( 𝐹 ∈ ( ℋ ↑m ℕ ) ∧ 𝐹 ( ⇝𝑡𝐽 ) 𝑥 ) )
16 15 rexbii ( ∃ 𝑥 ∈ ℋ 𝐹𝑣 𝑥 ↔ ∃ 𝑥 ∈ ℋ ( 𝐹 ∈ ( ℋ ↑m ℕ ) ∧ 𝐹 ( ⇝𝑡𝐽 ) 𝑥 ) )
17 8 10 16 3imtr4i ( 𝐹 ∈ Cauchy → ∃ 𝑥 ∈ ℋ 𝐹𝑣 𝑥 )