Metamath Proof Explorer


Theorem hhssba

Description: The base set of a subspace. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hhsssh2.1 W=+H×H×HnormH
hhssba.2 HS
Assertion hhssba H=BaseSetW

Proof

Step Hyp Ref Expression
1 hhsssh2.1 W=+H×H×HnormH
2 hhssba.2 HS
3 eqid +norm=+norm
4 3 1 hhsst HSWSubSp+norm
5 2 4 ax-mp WSubSp+norm
6 2 shssii H
7 3 1 5 6 hhshsslem1 H=BaseSetW