Metamath Proof Explorer


Theorem hial02

Description: A vector whose inner product is always zero is zero. (Contributed by NM, 28-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion hial02 AxxihA=0A=0

Proof

Step Hyp Ref Expression
1 oveq1 x=AxihA=AihA
2 1 eqeq1d x=AxihA=0AihA=0
3 2 rspcv AxxihA=0AihA=0
4 his6 AAihA=0A=0
5 3 4 sylibd AxxihA=0A=0
6 oveq2 A=0xihA=xih0
7 hi02 xxih0=0
8 6 7 sylan9eq A=0xxihA=0
9 8 ex A=0xxihA=0
10 9 a1i AA=0xxihA=0
11 10 ralrimdv AA=0xxihA=0
12 5 11 impbid AxxihA=0A=0