Metamath Proof Explorer


Theorem hire

Description: A necessary and sufficient condition for an inner product to be real. (Contributed by NM, 2-Jul-2005) (New usage is discouraged.)

Ref Expression
Assertion hire ABAihBAihB=BihA

Proof

Step Hyp Ref Expression
1 hicl ABAihB
2 cjreb AihBAihBAihB=AihB
3 1 2 syl ABAihBAihB=AihB
4 eqcom AihB=AihBAihB=AihB
5 3 4 bitrdi ABAihBAihB=AihB
6 ax-his1 BABihA=AihB
7 6 ancoms ABBihA=AihB
8 7 eqeq2d ABAihB=BihAAihB=AihB
9 5 8 bitr4d ABAihBAihB=BihA