Metamath Proof Explorer


Theorem hl0cl

Description: The Hilbert space zero vector. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hl0cl.1 X=BaseSetU
hl0cl.5 Z=0vecU
Assertion hl0cl UCHilOLDZX

Proof

Step Hyp Ref Expression
1 hl0cl.1 X=BaseSetU
2 hl0cl.5 Z=0vecU
3 hlnv UCHilOLDUNrmCVec
4 1 2 nvzcl UNrmCVecZX
5 3 4 syl UCHilOLDZX