Metamath Proof Explorer


Theorem hlatjcom

Description: Commutatitivity of join operation. Frequently-used special case of latjcom for atoms. (Contributed by NM, 15-Jun-2012)

Ref Expression
Hypotheses hlatjcom.j ˙=joinK
hlatjcom.a A=AtomsK
Assertion hlatjcom KHLXAYAX˙Y=Y˙X

Proof

Step Hyp Ref Expression
1 hlatjcom.j ˙=joinK
2 hlatjcom.a A=AtomsK
3 hllat KHLKLat
4 eqid BaseK=BaseK
5 4 2 atbase XAXBaseK
6 4 2 atbase YAYBaseK
7 4 1 latjcom KLatXBaseKYBaseKX˙Y=Y˙X
8 3 5 6 7 syl3an KHLXAYAX˙Y=Y˙X