Metamath Proof Explorer


Theorem hlatlej1

Description: A join's first argument is less than or equal to the join. Special case of latlej1 to show an atom is on a line. (Contributed by NM, 15-May-2013)

Ref Expression
Hypotheses hlatlej.l ˙ = K
hlatlej.j ˙ = join K
hlatlej.a A = Atoms K
Assertion hlatlej1 K HL P A Q A P ˙ P ˙ Q

Proof

Step Hyp Ref Expression
1 hlatlej.l ˙ = K
2 hlatlej.j ˙ = join K
3 hlatlej.a A = Atoms K
4 hllat K HL K Lat
5 eqid Base K = Base K
6 5 3 atbase P A P Base K
7 5 3 atbase Q A Q Base K
8 5 1 2 latlej1 K Lat P Base K Q Base K P ˙ P ˙ Q
9 4 6 7 8 syl3an K HL P A Q A P ˙ P ˙ Q