Metamath Proof Explorer


Theorem hlhil0

Description: The zero vector for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015) (Revised by Mario Carneiro, 29-Jun-2015)

Ref Expression
Hypotheses hlhil0.h H = LHyp K
hlhil0.l L = DVecH K W
hlhil0.u U = HLHil K W
hlhil0.k φ K HL W H
hlhil0.z 0 ˙ = 0 L
Assertion hlhil0 φ 0 ˙ = 0 U

Proof

Step Hyp Ref Expression
1 hlhil0.h H = LHyp K
2 hlhil0.l L = DVecH K W
3 hlhil0.u U = HLHil K W
4 hlhil0.k φ K HL W H
5 hlhil0.z 0 ˙ = 0 L
6 eqidd φ Base L = Base L
7 eqid Base L = Base L
8 1 3 4 2 7 hlhilbase φ Base L = Base U
9 eqid + L = + L
10 1 3 4 2 9 hlhilplus φ + L = + U
11 10 oveqdr φ x Base L y Base L x + L y = x + U y
12 6 8 11 grpidpropd φ 0 L = 0 U
13 5 12 syl5eq φ 0 ˙ = 0 U