Metamath Proof Explorer


Theorem hlhil0

Description: The zero vector for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015) (Revised by Mario Carneiro, 29-Jun-2015)

Ref Expression
Hypotheses hlhil0.h H=LHypK
hlhil0.l L=DVecHKW
hlhil0.u U=HLHilKW
hlhil0.k φKHLWH
hlhil0.z 0˙=0L
Assertion hlhil0 φ0˙=0U

Proof

Step Hyp Ref Expression
1 hlhil0.h H=LHypK
2 hlhil0.l L=DVecHKW
3 hlhil0.u U=HLHilKW
4 hlhil0.k φKHLWH
5 hlhil0.z 0˙=0L
6 eqidd φBaseL=BaseL
7 eqid BaseL=BaseL
8 1 3 4 2 7 hlhilbase φBaseL=BaseU
9 eqid +L=+L
10 1 3 4 2 9 hlhilplus φ+L=+U
11 10 oveqdr φxBaseLyBaseLx+Ly=x+Uy
12 6 8 11 grpidpropd φ0L=0U
13 5 12 eqtrid φ0˙=0U