Metamath Proof Explorer


Theorem hlhilnvl

Description: The involution operation of the star division ring for the final constructed Hilbert space. (Contributed by NM, 20-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015)

Ref Expression
Hypotheses hlhilnvl.h H=LHypK
hlhilnvl.u U=HLHilKW
hlhilnvl.r R=ScalarU
hlhilnvl.i ˙=HGMapKW
hlhilnvl.k φKHLWH
Assertion hlhilnvl φ˙=*R

Proof

Step Hyp Ref Expression
1 hlhilnvl.h H=LHypK
2 hlhilnvl.u U=HLHilKW
3 hlhilnvl.r R=ScalarU
4 hlhilnvl.i ˙=HGMapKW
5 hlhilnvl.k φKHLWH
6 fvex EDRingKWV
7 4 fvexi ˙V
8 starvid 𝑟=Slot*ndx
9 8 setsid EDRingKWV˙V˙=*EDRingKWsSet*ndx˙
10 6 7 9 mp2an ˙=*EDRingKWsSet*ndx˙
11 eqid EDRingKW=EDRingKW
12 eqid EDRingKWsSet*ndx˙=EDRingKWsSet*ndx˙
13 1 2 5 11 4 12 hlhilsca φEDRingKWsSet*ndx˙=ScalarU
14 13 3 eqtr4di φEDRingKWsSet*ndx˙=R
15 14 fveq2d φ*EDRingKWsSet*ndx˙=*R
16 10 15 eqtrid φ˙=*R