Metamath Proof Explorer


Theorem hlhilsmul

Description: Scalar multiplication for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015) (Revised by AV, 6-Nov-2024)

Ref Expression
Hypotheses hlhilslem.h H=LHypK
hlhilslem.e E=EDRingKW
hlhilslem.u U=HLHilKW
hlhilslem.r R=ScalarU
hlhilslem.k φKHLWH
hlhilsmul.m ·˙=E
Assertion hlhilsmul φ·˙=R

Proof

Step Hyp Ref Expression
1 hlhilslem.h H=LHypK
2 hlhilslem.e E=EDRingKW
3 hlhilslem.u U=HLHilKW
4 hlhilslem.r R=ScalarU
5 hlhilslem.k φKHLWH
6 hlhilsmul.m ·˙=E
7 mulridx 𝑟=Slotndx
8 starvndxnmulrndx *ndxndx
9 8 necomi ndx*ndx
10 1 2 3 4 5 7 9 6 hlhilslem φ·˙=R