Metamath Proof Explorer


Theorem hlhilsmulOLD

Description: Obsolete version of hlhilsmul as of 6-Nov-2024. The scalar multiplication for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses hlhilslem.h H = LHyp K
hlhilslem.e E = EDRing K W
hlhilslem.u U = HLHil K W
hlhilslem.r R = Scalar U
hlhilslem.k φ K HL W H
hlhilsmul.m · ˙ = E
Assertion hlhilsmulOLD φ · ˙ = R

Proof

Step Hyp Ref Expression
1 hlhilslem.h H = LHyp K
2 hlhilslem.e E = EDRing K W
3 hlhilslem.u U = HLHil K W
4 hlhilslem.r R = Scalar U
5 hlhilslem.k φ K HL W H
6 hlhilsmul.m · ˙ = E
7 df-mulr 𝑟 = Slot 3
8 3nn 3
9 3lt4 3 < 4
10 1 2 3 4 5 7 8 9 6 hlhilslemOLD φ · ˙ = R