Metamath Proof Explorer


Theorem hlimconvi

Description: Convergence of a sequence on a Hilbert space. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Hypothesis hlim.1 AV
Assertion hlimconvi FvAB+yzynormFz-A<B

Proof

Step Hyp Ref Expression
1 hlim.1 AV
2 1 hlimi FvAF:Ax+yzynormFz-A<x
3 2 simprbi FvAx+yzynormFz-A<x
4 breq2 x=BnormFz-A<xnormFz-A<B
5 4 rexralbidv x=ByzynormFz-A<xyzynormFz-A<B
6 5 rspccva x+yzynormFz-A<xB+yzynormFz-A<B
7 3 6 sylan FvAB+yzynormFz-A<B