Metamath Proof Explorer


Theorem hlipcj

Description: Conjugate law for Hilbert space inner product. (Contributed by NM, 8-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlipf.1 X=BaseSetU
hlipf.7 P=𝑖OLDU
Assertion hlipcj UCHilOLDAXBXAPB=BPA

Proof

Step Hyp Ref Expression
1 hlipf.1 X=BaseSetU
2 hlipf.7 P=𝑖OLDU
3 hlnv UCHilOLDUNrmCVec
4 1 2 dipcj UNrmCVecBXAXBPA=APB
5 3 4 syl3an1 UCHilOLDBXAXBPA=APB
6 5 3com23 UCHilOLDAXBXBPA=APB
7 6 eqcomd UCHilOLDAXBXAPB=BPA